首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 884 毫秒
1.
We report a joint theoretical-experimental study on the optical properties of 5-N-succinimidyl-2,2'-bithiophene (NS-2T), a prototype system for a new class of biomarkers. Time-dependent density functional theory (TD-DFT) and approximate coupled-cluster single and doubles (CC2) calculations are performed in the ground and excited states. Theoretical results are compared with absorption, photoluminescence (PL), time-resolved PL, and PL quantum efficiency measurements. The excited state of NS-2T has a larger dipole moment as compared to that of the ground state, explaining the experimental shift of the PL peak in solvents of different polarity, and a smaller intersystem crossing (ISC) rate as compared to that of isolated bithiophene (2T), explaining the increased PL quantum efficiency. We also studied two model systems to describe the effects of the covalent binding of NS-2T to biomolecules and proteins with the epsilon-NH(2) lysine groups. These model systems show optical properties closer to 2T, as the PL quantum efficiency is reduced due to the increased ISC rate. Theoretical calculations and experimental results show that covalent binding of NS-2T to a biomolecule will blue-shift the absorption but not the photoluminescence. CC2 and TD-DFT can very well describe the absorption and photoluminescence energies of all three systems, but the presence of several charge-transfer transitions in the TD-DFT spectrum of NS-2T required the use of a correlated method to validate the TD-DFT results.  相似文献   

2.
3.
The photophysical properties of polar molecules in solution with an intramolecular charge-transfer effect in the excited state depend strongly on the polarity and proticity of the solvents. UV-visible spectra of 1,8-naphthalimide and some N-substituted derivatives in acetic acid, acetonitrile, dichloromethane, and p-dioxane were carried out. Several molecular cluster geometries formed with N-substituted 1,8-naphthalimide derivatives and a large set of random positioning of some solvent molecules in their environment were optimized by a semiempirical method. It provided a complete screening of possible solute-solvent configurations and resulted in a multiple minima hypersurface of the supramolecular systems. With such local minima energies, the main thermodynamic association functions were found. They also provided selected cluster geometries for calculations of vertical electronic transitions with a time-dependent density functional theory (TD-DFT), if the lowest energy structures were considered. Calculated vertical electronic transition energies at the TD-DFT level were compared with experimental data. The experimental absorption UV-visible spectra for the six compounds in the four solvents were performed in our laboratory. Moreover, X-ray photoelectron spectroscospy of the 1,8-naphthalimide was carried out in the ICP-CSIC laboratory. Thermodynamic function values show different association energies between each solvent and the molecules, in correlation with the possibility of hydrogen bond formation and the polarity and dielectric constant of the solvents. The 3- and 4-acetamide 1,8-naphthalimide derivatives have the highest conformer number and the most negative Gibbs free association energy values for a determined solvent. This indicates the importance of the entropic factors.  相似文献   

4.
Calculations are carried out on the A state of HO2, CH3O2, and CH3CH2O2 and 10 isomers and conformers of the isoprene-OH-O2 peroxy radicals derived from OH addition to isoprene (2-methyl-1,3-butadiene). In addition to calculating vertical and adiabatic excitation energies, we consider the effect of excitation on molecular structure, and examine the OO stretching frequencies, which are known to be major features in the absorption spectra of the A states of the smaller radicals. The two methods used are the configuration interaction with single excitations (CIS) method and time-dependent density functional theory (TD-DFT), both with a range of basis sets up to 6-311++G(2df,2pd). TD-DFT overestimates excitation energies considerably, while CIS tends to underestimate them slightly. TD-DFT does seem to capture the trend in excitation energy vs. size for the smaller peroxy radicals. Conformation and configuration strongly affect the excitation energies of the peroxy radicals from isoprene. CIS calculations indicate that the intramolecular OH--O hydrogen bonds, present in the ground state of some peroxy radicals from isoprene, are weakened or broken in the excited state, while TD-DFT calculations suggest they are retained.  相似文献   

5.
We present a theoretical study of the ground and the lowest triplet excited states of the tris-(1,4,5,8-tetraazaphenanthrene) ruthenium complex [Ru(tap)3]2+. Density functional theory (DFT) was used to obtain the relaxed geometries and emission energies (Delta-SCF), whereas time-dependent DFT (TD-DFT) was used to compute the absorption spectrum. Our calculations have revealed the presence of three low-lying excited-state minima, which may be relevant in the photophysical/photochemical properties of this complex. Two minima with similar energies correspond to the MLCT 3A2 and MLCT 3B metal-to-ligand charge-transfer states, the first one corresponding to a D3 structure, whereas the second is a slightly localized C2 species. The third and lowest one corresponds to the metal-centered MC 3A state and displays a pronounced C2 distortion. We have examined for the first time the localized character of the excitation in the computed MLCT states. In particular, we have evaluated the pseudorotation barrier between the Jahn-Teller C2 MLCT 3B minima in the moat around the D3 conical intersection. We have shown that the complex should be viewed as a delocalized [Ru3+(tap(-1/3))3]2+ complex in the lowest MLCT states, in agreement with subpicosecond interligand electron transfer observed by femtosecond transient absorption anisotropy study. Upper-bound estimates of the MLCT-->MC (3 kcal/mol) and MC-->MLCT (10 kcal/mol) activation energy barriers obtained from potential energy profiles in vacuum corroborate the high photoinstability of the MLCT states of the [Ru(tap)3]2+complex.  相似文献   

6.
The crystal structure of 2-butylamino-6-methyl-4-nitropyridine N-oxide (2B6M) was resolved on the basis of X-ray diffraction. Solid 2B6M occurs in the form of a doubly hydrogen-bonded dimer with squarelike hydrogen-bonding network composed of two intra- (2.556(2) A) and two intermolecular (2.891(2) A) N-H...O type hydrogen bonds. The molecule thus has both a protonable and a deprotonable group that led us to investigate the possibility of an excited-state proton transfer (ESIPT) reaction in different solvents by means of experimental absorption, steady state, and time-resolved emission spectroscopy. The results were correlated with quantum mechanical TD-DFT and PM3 calculations. Experimental and theoretical findings show the possibility of an ESIPT reaction in polar solvents. It is demonstrated that in particular the emission spectra of 2B6M are very sensitive to solvent properties, and a large value of the Stokes shift (about 8000 cm(-1)) in acetonitrile is indicative for an ESIPT process. This conclusion is further supported by time-resolved fluorescence decay measurents that show dual exponential decay in polar solvents. Vertical excitation energies calculated by TD-DFT reproduce the experimental absorption maxima in nonpolar solvents well. The majority of electronic transitions in 2B6M is of pi --> pi* character with a charge shift from the electron-donating to the electron-accepting groups. The calculations show that, due to the charge redistribution on excitation, the acidity of the amino group increases significantly, which facilitates the proton transfer from the amino to the N-oxide group in the excited state.  相似文献   

7.
A unified picture is presented of water interacting with pyridine, pyridazine, pyrimidine, and pyrazine on the S(1) manifold in both gas-phase dimers and in aqueous solution. As (n,π*) excitation to the S(1) state removes electrons from the ground-state hydrogen bond, this analysis provides fundamental understanding of excited-state hydrogen bonding. Traditional interpretations view the excitation as simply breaking hydrogen bonds to form dissociated molecular products, but reactive processes such as photohydrolysis and excited-state proton coupled electron transfer (PCET) are also possible. Here we review studies performed using equations-of-motion coupled-cluster theory (EOM-CCSD), multireference perturbation theory (CASPT2), time-dependent density-functional theory (TD-DFT), and excited-state Monte Carlo liquid simulations, adding new results from symmetry-adapted-cluster configuration interaction (SAC-CI) and TD-DFT calculations. Invariably, gas-phase molecular dimers are identified as stable local minima on the S(1) surface with energies less than those for dissociated molecular products. Lower-energy biradical PCET minima are also identified that could lead to ground-state recombination and hence molecular dissociation, dissociation into radicals or ions, or hydration reactions leading to ring cleavage. For pyridine.water, the calculated barriers to PCET are low, suggesting that this mechanism is responsible for fluorescence quenching of pyridine.water at low energies rather than accepted higher-energy Dewar-benzene based "channel three" process. Owing to (n,π*) excitation localization, much higher reaction barriers are predicted for the diazines, facilitating fluorescence in aqueous solution and predicting that the as yet unobserved fluorescence from pyridazine.water and pyrimidine.water should be observable. Liquid simulations based on the assumption that the solvent equilibrates on the fluorescence timescale quantitatively reproduce the observed spectral properties, with the degree of (n,π*) delocalization providing a critical controlling factor.  相似文献   

8.
9.
Synthesis, absorption spectra and luminescebce properties of a series of lanthanide trisbipyridine cryptates Ln within R-Bpy x R-Bpy x R-Bpy, where Ln = Eu, Gd and R = H, COOH, COOCH3, CONH(CH2)2NH2 are described. Comparison of the unsubstituted parent compound with the substituted compounds shows that bipyridine substitution doesn't alter significantly the photophysical properties of the lanthanide cryptate. The absorption maximum is slightly red-shifted when three bipyridines are substituted, whereas substituting one bipyridines has a negligible effect on the absorption spectra. The experimental triplet state energy is between 21600 and 22 100 cm(-1) for the series of compounds and the luminescence lifetimes at 77 K are between 0.5 and 0.8 ms in HO2 and equal to 1.7 ms in D2O. The experimental characterizations are completed by DFT and TD-DFT calculations to assess the ability of these approaches to predict absorption maxima, triplet state energies and structural parameters of lanthanide cryptates and to characterize the electronic structure of the excited states. The calculations on the unsubstituted parent and substituted compounds show that absorption maxima and lowest 3pipi* triplet state energies can be accurately determined from density functional theory (DFT) and time-dependent (TD) DFT calculations.  相似文献   

10.
We report a theoretical study on the optical properties of bithiophene and terthiophene N-succinimidyl esters, which have been functionalized with a methylsulfanyl group in the alpha or the beta positions. Time-dependent density functional theory (TD-DFT) and approximate coupled-cluster singles and doubles with the resolution of identity technique (RI-CC2) calculations have been performed in the ground and excited states. The RI-CC2 results for absorption and fluorescence energies are in better qualitative agreement with experiments, whereas TD-DFT does not correctly describe the higher energy part of the absorption spectra of beta-substituted bithiophenes, due to the presence of charge-transfer states. Systems functionalized at the alpha position show a large red-shift of the main absorption and fluorescence band and a larger Stokes-shift compared to the unsubstituted species. These effects are in most cases less pronounced for the beta-substituted structures. In particular, we found that the Stokes-shift of the alpha-substituted structures is larger than the one of the beta-substituted species due to a more planar orientation of the methylsulfanyl group with respect to the neighbouring thiophene in the excited state.  相似文献   

11.
In recent years, interactions of metal ions with amino acid derivatives have been studied extensively due to their immense importance in the life-supporting processes. Here, we report the synthesis of three metal (Ni2+, Cu2+, and Zn2+) complexes of N-acetyl-l-cysteine (NAC) using a solvent-free solid-state method. Characterization of the complexes by elemental analyses, molar conductance, SEM, infrared and electronic absorption spectra reveals that the metal ions bind to the NAC molecules in 1:2 molar ratio (metal:ligand) via the S-atoms. Theoretical calculations are carried out using the B3LYP hybrid functional in combination with 6-31++G(d,p) and LANL2DZ basis sets to investigate the effects of metal coordination on the backbone structural features of NAC and geometry about the α-carbon atom. The molecular geometries of NAC as well as its metal complexes are fully optimized in gas phase without applying any geometrical constraint, and a second derivative analysis confirms that all the optimized geometries are true minima. TD-DFT single-point calculations are performed in aqueous phase to obtain the theoretical λ max values. The gas-phase interaction enthalpies (metal ion binding affinities), Gibbs energies, HOMO/LUMO energies as well as their energy gaps, rotational constants, dipole moments, and theoretically predicted vibrational spectra of all the reaction species are also calculated and thoroughly analyzed. Most of the experimental results are well reproduced by the B3LYP level of calculations. Metal ion coordination to NAC modifies its backbone structural features as well as the geometry about the α-carbon atom.  相似文献   

12.
Vertical excitation energies for the lowest eleven singlet states of Td N4 were calculated using the TD-DFT method with the B3LYP functional, and at the EOM-CCSD level of theory. The vertical excitation energies for the five lowest-lying excited states were also obtained using the state-averaged CASSCF, CASPT2, CASPT3, and MRCI + Q methods. Our results show that the five lowest-lying states are of valence character. EOM-CCSD/d-aug-cc-pVTZ calculations predict that there are two weakly allowed optical transitions of T2 symmetry at 10.44 and 10.82 eV. The transition to the third T2 state, which is predicted to be at 10.89 eV, has an oscillator strength about one order of magnitude higher.  相似文献   

13.
Optical excitations of low energy silica (SiO(2))(4) clusters obtained by global optimization, as opposed to constructed by hand, are studied using a range of theoretical methods. By focusing on the lowest energy silica clusters we hope to capture at least some of the characteristic ways by which the dry surfaces of silica nanosystems preferentially terminate. Employing the six lowest energy (SiO(2))(4) cluster isomers, we show that they exhibit a surprisingly wide range of geometries, defects, and associated optical excitations. Some of the clusters show excitations localized on isolated defects, which are known from previous studies using hydrogen-terminated versions of the defect in question. Other clusters, however, exhibit novel charge-transfer excitations in which an electron transfers between two spatially separated defects. In these cases, because of the inherent proximity of the constituent defects due to the small cluster dimensions, the excitation spectrum is found to be very different from that of the same defects in isolation. Excitation spectra of all clusters were calculated using time-dependent density functional theory (TD-DFT) and delta-SCF DFT (DeltaDFT) methods employing two different hybrid density functionals (B3LYP and BB1K) differing essentially in the amount of incorporated Hartree-Fock-like exchange (HFLE). In all cases the results were compared with CASPT2 calculated values which are taken as a benchmark standard. In line with previous work, the spatially localized excitations are found to be well described by TD-DFT/B3LYP but which gives excitation energies that are significantly underestimated in the case of the charge-transfer excitations. The TD-DFT/BB1K combination in contrast is found to give generally good excitation energies for the lowest excited states of both localized and charge-transfer excitations. Finally, our calculations suggest that the increased quality of the predicted excitation spectra by adding larger amounts of HFLE is mainly due to an increased localization of the excited state associated with the elimination of spurious self-interaction inherent to (semi-)local DFT functionals.  相似文献   

14.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

15.
Time-dependent density functional (TD-DFT) and perturbation theory-based outer valence Green functions (OVGF) methods have been tested for calculations of excitation energies for a set of radicals, molecules, and model clusters simulating points defects in silica. The results show that the TD-DFT approach may give unreliable results not only for diffuse Rydberg states, but also for electronic states involving transitions between MOs localized in two remote from each other spatial regions, for example, for charge-transfer excitations. For the. O-SiX(3) clusters, where X is a single-valence group, TD-DFT predicts reasonable excitation energies but incorrect sequence of electronic transitions. For a number of cases where TD-DFT is shown to be unreliable, the OVGF approach can provide better estimates of excitation energies, but this method also is not expected to perform universally well. The OVGF performance is demonstrated to be satisfactory for excitations with predominantly single-determinant wave functions where the deviations of the calculated energies from experiment should not exceed 0.1-0.3 eV. However, for more complicated transitions involving multiple bonds or for excited states with multireference wave functions the OVGF approach is less reliable and error in the computed energies can reach 0.5-1 eV.  相似文献   

16.
Modifications of the optical properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] induced by fluorination of the vinylene units are investigated by means of time dependent density functional theory (TD-DFT) calculations and spectroscopic measurements in solution. The energy of the main absorption peak is blue-shifted by more than 0.8 eV in the fluorinated polymers. TD-DFT excitation energies for non-fluorinated and fluorinated oligomer structures of increasing number of monomers, employing fully relaxed geometries, are compared to the experimental absorption energies of the polymers. We found that the measured large blue-shift induced by the fluorination of the vinylene units is not caused by the electron-withdrawing effect of the fluorine substituents but it is related to a steric effect. The inter-monomer torsional angle of the fluorinated structures increases above 50 degrees , while in the non-fluorinated systems it is below 20 degrees . Further insight into the origin of the large blue-shift of the excitation energies is gained by a detailed analysis of the torsional potentials of non-fluorinated and fluorinated dihydroxystilbene. While for planar geometries the energy gap increases due to fluorination, it decreases for highly distorted geometries. In addition, we found that the torsional potential of dihydroxystilbene is rather flat, meaning that different isomers might, e.g., in the solid state, coexist.  相似文献   

17.
Time-dependent configuration interaction (TD-CI) simulations can be used to simulate molecules in intense laser fields. TD-CI calculations use the excitation energies and transition dipoles calculated in the absence of a field. The EOM-CCSD method provides a good estimate of the field-free excited states but is rather expensive. Linear-response time-dependent density functional theory (TD-DFT) is an inexpensive alternative for computing the field-free excitation energies and transition dipoles needed for TD-CI simulations. Linear-response TD-DFT calculations were carried out with standard functionals (B3LYP, BH&HLYP, HSE2PBE (HSE03), BLYP, PBE, PW91, and TPSS) and long-range corrected functionals (LC-ωPBE, ωB97XD, CAM-B3LYP, LC-BLYP, LC-PBE, LC-PW91, and LC-TPSS). These calculations used the 6-31G(d,p) basis set augmented with three sets of diffuse sp functions on each heavy atom. Butadiene was employed as a test case, and 500 excited states were calculated with each functional. Standard functionals yield average excitation energies that are significantly lower than the EOM-CC, while long-range corrected functionals tend to produce average excitation energies slightly higher. Long-range corrected functionals also yield transition dipoles that are somewhat larger than EOM-CC on average. The TD-CI simulations were carried out with a three-cycle Gaussian pulse (ω = 0.06 au, 760 nm) with intensities up to 1.26 × 10(14) W cm(-2) directed along the vector connecting the end carbons. The nonlinear response as indicated by the residual populations of the excited states after the pulse is far too large with standard functionals, primarily because the excitation energies are too low. The LC-ωPBE, LC-PBE, LC-PW91, and LC-TPSS long-range corrected functionals produce responses comparable to EOM-CC.  相似文献   

18.
General chemical strategies which provide controlled changes in the emission or absorption properties of biologically compatible fluorophores remain elusive. One strategy employed is the conversion of a fluorophore-attached alkyne (or azide) to a triazole through a copper-catalyzed azide-alkyne coupling (CuAAC) reaction. In this study, we have computationally examined a series of structurally related 2,1,3-benzoxadiazole (benzofurazan) fluorophores and evaluated changes in their photophysical properties upon conversion from alkyne (or azide) to triazole forms. We have also determined the photophysical properties for a known set of benzoxadiazole compounds. The absorption and emission energies have been determined computationally using time-dependent density functional theory (TD-DFT) with the Perdew, Burke, and Ernzerhof exchange-correlation density functional (PBE0) and the 6-31+G(d) basis set. The TD-DFT results consistently agreed with the experimentally determined absorption and emission wavelengths except for certain compounds where charge-transfer excited states occurred. In addition to determining the absorption and emission wavelengths, simple methods for predicting relative quantum yields previously derived from semiempirical calculations were reevaluated on the basis of the new TD-DFT results and shown to be deficient. These results provide a necessary framework for the design of new substituted benzoxadiazole fluorophores.  相似文献   

19.
为了探讨D-D-π-A型染料中双给体对敏化剂性能的影响, 本文结合密度泛函理论(DFT)及含时密度泛函理论(TD-DFT)对染料1~4的几何结构、 电子结构、 吸收光谱、 电化学性质、 电子复合程度以及半导体导带边缘的移动等进行了对比研究. 结果表明, 相比于经典的D-π-A型染料分子1, 在分子2~4(D-D-π-A型双给体染料) 中额外引入给体, 尽管对导带能级移动的改变不是很显著, 但是可以改变体系的共轭程度, 增加染料的光吸收强度. 重要的是, 额外给体的引入可以显著增加染料阳离子空穴-半导体之间的距离, 从而减缓注入电子与染料阳离子的复合; 在额外给体中引入杂原子可以使I2聚集在染料外侧, 从而降低电解质在半导体表面的局域浓度, 进而减缓注入电子与电解质之间的复合速率. 因此, 通过在经典的D-π-A型染料上引入额外的电子给体构筑D-D-π-A型染料可以有效调节染料的光吸收、 电化学及电子复合等方面的性质, 是设计合成高性能染料的可行策略.  相似文献   

20.
Absorption spectrum of H(2)CS in the region 5.6-9.5 eV was recorded with a continuously tunable light source of synchrotron radiation. After we subtracted absorption bands of CS(2), our spectrum clearly shows vibrational progressions associated with transitions (1)A(1)(pi,pi*)-X (1)A(1) and (1)B(2)(n,4s)-X (1)A(1) in the region 5.6-6.7 eV. A spectrum from which absorption of C(2)H(4) and CS(2) are subtracted shows several discrete bands in the region 6.9-9.5 eV. A Rydberg state (1)B(2)(n,4p(z)) lying below Rydberg state (1)A(1)(n,4p(y)) is confirmed, and the C-H symmetric stretching (nu(1)) and CH out-of-plane bending (nu(4)) modes for a transition (1)B(2)(n,4s)-X (1)A(1) are identified. New transitions to Rydberg states associated with excitation to 5s-11s, 5p(z)-7p(z), 5p(y)-7p(y), and 3d-6d are identified based on quantum defects and comparison with vertical excitation energies predicted with time-dependent density-functional theory (TD-DFT) and outer-valence Green's-function (OVGF) methods. For lower excited states predictions from these TD-DFT6-31+G calculations agree satisfactorily with experimental values, but for higher Rydberg states the OVGF method using aug-cc-pVTZ basis set augmented with extra diffuse functions yields more accurate predictions of excitation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号