首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis, characterization, and reactivity properties of a mononuclear Ni(II) cis-beta-keto-enolate complex, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) are reported. Complex 1 was characterized by X-ray crystallography, elemental analysis, 1H NMR, and electronic absorption and infrared spectroscopy. Treatment of 1 with 1 equiv of Me4NOH.5H2O in the presence of O2 results in oxidative carbon-carbon bond cleavage and the formation of a new Ni(II) dicarboxylate complex, [(6-Ph2TPA)Ni(O2CPh)2(H2O)] (2). Complex 2 has been characterized by X-ray crystallography, 1H NMR, UV-vis, IR, and elemental analysis. Use of 18O2 in the reaction of 1 to produce 2 results in the incorporation of one 18O atom per carboxylate ligand in the majority of the sample. Production of CO in the oxidative conversion of 1 to 2 was detected using the palladium chloride method. This is the first functional model system of relevance to acireductone dioxygenase (ARD), a novel Ni(II)-containing enzyme that catalyzes a reaction that is a shunt out of the methionine salvage pathway in K. pneumoniae.  相似文献   

2.
Reaction conditions were evaluated for the preparation of [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (3) and [(6-Ph(2)TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO(4) (7), two complexes of structural relevance to the enzyme/substrate (ES) adduct in Ni(II)- and Co(II)-containing forms of acireductone dioxygenase. The presence of water in reactions directed at the preparation of 3 and 7 was found to result in isomerization of the enolate precursor 2-hydroxy-1,3-diphenylpropane-1,3-dione to give the ester 2-oxo-2-phenylethylbenzoate. Performing synthetic procedures under dryer conditions reduced the amount of ester production and enabled the isolation of 3 in high yield. This complex was comprehensively characterized, including by X-ray crystallography. Using similar conditions for the 6-Ph(2)TPACo-containing system, the amount of ester generated was only modestly affected, but the formation of a benzoate complex ([(6-Ph(2)TPA)Co(O(2)CPh)]ClO(4), 10) resulting from ester hydrolysis was prevented. The best preparation of 7 was found to involve dry conditions and short reaction times. The approach outlined herein toward determining appropriate reaction conditions for the preparation of 3 and 7 involved the preparation and characterization of several air-stable (6-PhTPA)Ni- and (6-Ph(2)TPA)Co-containing analog complexes having enolate, solvent, and benzoate ligands. These complexes were used as paramagnetic (1)H NMR standards for evaluation of reaction mixtures containing 3 and 7.  相似文献   

3.
A mononuclear Ni(II) complex ([(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1)), supported by the 6-Ph2TPA chelate ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) and containing a cis-beta-keto-enolate ligand having a C2 hydroxyl substituent, undergoes reaction with O2 to produce a Ni(II) monobenzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)), CO, benzil (PhC(O)C(O)Ph), benzoic acid, and other minor unidentified phenyl-containing products. Complex 3 has been identified through independent synthesis and was characterized by X-ray crystallography, 1H NMR, FAB-MS, FTIR, and elemental analysis. A series of cis-beta-keto-enolate Ni(II) complexes supported by the 6-Ph2TPA ligand ([(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4), [(6-Ph2TPA)Ni(CH3C(O)CHC(O)CH3)]ClO4 (5), and [(6-Ph2TPA)Ni(PhC(O)CHC(O)C(O)Ph) (6)) have been prepared and characterized. While these complexes exhibit structural and/or spectroscopic similarity to 1, all are unreactive with O2. The results of this study are discussed in terms of relevance to Ni(II)-containing acireductone dioxygenase enzymes, as well as in the context of recently reported cofactor-free, quercetin, and beta-diketone dioxygenases.  相似文献   

4.
Rudzka K  Arif AM  Berreau LM 《Inorganic chemistry》2008,47(23):10832-10840
Using a new N(4)-donor chelate ligand having a mixture of hydrophobic phenyl and hydrogen-bond-donor appendages, a trinuclear nickel(II) complex of the doubly deprotonated form of 2-hydroxy-1,3-diphenylpropane-1,3-dione was isolated, characterized (X-ray crystallography, elemental analysis, UV-vis, (1)H NMR, FTIR, and magnetic moment measurement), and evaluated for O(2) reactivity. This complex, [(6-NA-6-Ph(2)TPANi)(2)(mu-PhC(O)C(O)C(O)Ph)(2)Ni](ClO(4))(2) (4), has two terminal pseudooctahedral Ni(II) centers supported by the tetradentate chelate ligand and a central square-planar Ni(II) ion ligated by oxygen atoms of two bridging enediolate ligands. In CH(3)CN, 4 exhibits a deep orange/brown color and lambda(max) = 463 nm (epsilon = 16 000 M(-1)cm(-1)). The room temperature magnetic moment of 4, determined by Evans method, is mu(eff) = 5.3(2) mu(B). This is consistent with the presence of two noninteracting high-spin Ni(II) centers, a diamagnetic central Ni(II) ion, and an overall quintet ground state. Exposure of a CH(3)CN solution of 4 to O(2) results in the rapid loss of the orange/brown color to give a green solution. The products identified from this reaction are [(kappa(3)-6-NA-6-Ph(2)TPA)Ni(O(2)Ph)(H(2)O)]ClO(4) (5), benzil [PhC(O)C(O)Ph], and CO. Identification of 5 was achieved via its independent synthesis and a comparison of its (1)H NMR and mass spectral features with those of the 6-NA-6-Ph(2)TPA-containing product generated upon reaction of 4 with O(2). The independently prepared sample of 5 was characterized by X-ray crystallography, elemental analysis, UV-vis, mass spectrometry, and FTIR. The O(2) reactivity of 4 has relevance to the active-site chemistry of Ni(II)-containing acireductone dioxygenase (Ni(II)ARD).  相似文献   

5.
Silyl compounds (N,N-dialkyltrimethylsilylamine, 1-(trimethylsilyl)-imidazole and phenylthiotrimethylsilane) were successfully used in the Ni(CO)4 -induced carbonylation reactions of gem-dibromocyclopropanes. The nickel carbenoid and enolate complexes are considered to be involved as key intermediates. Protonation afforded the cyclopropanecarboxylic acid derivatives. The presence of an electrophile achieved another stereoselective carbon-carbon bond formation via the nickel enolate intermediate.  相似文献   

6.
The compounds HM(CO)4SnPh3, M = Os (10), Ru (11) are activated in the presence of Pt(PBut3)2 and Pd(PBu(t)3)2 toward the insertion of PhC2H into the M-H bond. The compounds PtOs(CO)4(SnPh3)(PBu(t)3)[mu-HCC(H)Ph], 12, and PtOs(CO)4(SnPh3)(PBu(t)3)[mu-H2CCPh], 13, were obtained from the reaction of 10 with PhC2H in the presence of Pt(PBu(t)3)2. Compounds 12 and 13 are isomers containing alkenyl ligands formed by the insertion of the PhC2H molecule into the Os-H bond at both the substituted and unsubstituted carbon atoms of the alkyne. Both compounds contain a Pt(PBu(t)3) group that is bonded to the osmium atom and a bridging alkenyl ligand that is pi-bonded to the osmium atom. The reaction of 11 with PhC2H in the presence of Pt(PBu(t)3)2 yielded the products PtRu(CO)4(SnPh3)(PBu(t)3)[mu-HC2(H)Ph], 14, and PtRu(CO)4(SnPh3)(PBut3)[mu-H2C2Ph], 15, which are also isomers similar to 12 and 13. The reaction of 11 with PhC2H in the presence of Pd(PBu(t)3)2 yielded the product PdRu(CO)4(SnPh3)(PBu(t)3)[mu-H2C2Ph], 16. Compound 16 contains a Pd(PBu(t)3) group bonded to the ruthenium atom and a bridging H2C2Ph ligand that is pi-bonded to the palladium atom. Compound 10 reacted with Pt(PBu(t)3)2 in the absence of PhC2H to yield the compound PtOs(CO)4(SnPh3)(PBu(t)3)(mu-H), 17. Compound 17 is a Pt(PBu(t)3) adduct of 10. It contains a Pt-Os bond with a bridging hydrido ligand. Compound 17 reacted with PhC2H to yield 12. Compound 12 reacted with PhC2H to yield the compound PtOs(CO)3(SnPh3)(PBu(t)3)[mu-HCC(Ph)C(H)C(H)Ph], 18. Compound 18 contains a bridging 2,4-diphenylbutadienyl ligand, HCC(Ph)C(H)C(H)Ph, that is pi-bonded to the osmium atom and sigma-bonded to the platinum atom. Fenkse-Hall molecular orbitals of 17 were calculated. The LUMO of 17 exhibits an empty orbital on the platinum atom that appears to be the most likely site for PhC2H addition prior to its insertion into the Os-H bond.  相似文献   

7.
The synthesis, characterization, and hemithioacetal isomerization reactivity of a mononuclear Ni(II) deprotonated amide complex, [(bppppa-)Ni]ClO4.CH3OH (1, bppppa- = monoanion of N,N-bis-[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine), are reported. Complex 1 was characterized by X-ray crystallography, 1H NMR, UV-vis, FTIR, and elemental analysis. Treatment of 1 with an equimolar amount of the hemithioacetal PhC(O)CH(OH)SCD3 in dry acetonitrile results in the production of the thioester PhCH(OH)C(O)SCD3 in approximately 60% yield. This reaction is conveniently monitored via 2H NMR spectroscopy. A protonated analogue of 1, [(bppppa)Ni](ClO4)2 (2), is unreactive with the hemithioacetal, thus indicating the requirement of the anionic chelate ligand in 1 for hemithioacetal isomerization reactivity. Complex 1 is unreactive with the thioester product, PhCH(OH)C(O)SCD3, which indicates that the pKa value for the PhCH(OH)C(O)SCD3 proton of the thioester must be significantly higher than the pKa value of the C-H proton of the hemithioacetal (PhC(O)CH(OH)SCD3). Complex 1 is the first well-characterized Ni(II) coordination complex to exhibit reactivity relevant to Ni(II)-containing E. coli glyoxalase I. Treatment of NiBr2.2H2O with PhC(O)CH(OH)SCD3 in the presence of 1-methylpyrrolidine also yields thioester product, albeit the reaction is slower and involves the formation of multiple -SCD3 labeled species, as detected by 2H NMR spectroscopy. The results of this study provide the first insight into hemithioacetal isomerization promoted by a synthetic Ni(II) coordination complex versus a simple Ni(II) ion.  相似文献   

8.
The C-Cl bonds of ortho-chlorinated benzamides Cl-ortho-C(6)H(4)C(=O)NHR (R = Me (1), nBu (2), Ph (3), (4-Me)Ph (4) and (4-Cl)Ph (5)) were successfully activated by tetrakis(trimethylphosphine)nickel(0) and tetrakis(trimethylphosphine)cobalt(0). The four-coordinate nickel(II) chloride complexes trans-[(C(6)H(4)C([double bond, length as m-dash]O)NHR)Ni(PMe(3))(2)Cl] (R = Me (6), nBu (7), Ph (8) and (4-Me)Ph (9)) as C-Cl bond activation products were obtained without coordination of the amide groups. In the case of 2, the ionic penta-coordinate cobalt(II) chloride [(C(6)H(4)C(=O)NHnBu)Co(PMe(3))(3)]Cl (10) with the [C(phenyl), O(amide)]-chelate coordination as the C-Cl bond activation product was isolated. Under similar reaction conditions, for the benzamides 3-5, hexa-coordinate bis-chelate cobalt(III) complexes (C(6)H(4)C(=O)NHR)Co(Cl-ortho-C(6)H(4)C(=O)NR)(PMe(3))(2) (11-13) were obtained via the reaction with [Co(PMe(3))(4)]. Complexes 11-13 have both a five-membered [C,N]-coordinate chelate ring and a four-membered [N,O]-coordinate chelate ring with two trimethyphosphine ligands in the axial positions. Phosphonium salts [Me(3)P(+)-ortho-C(6)H(4)C(=O)NHR]Cl(-) (R = Ph (14) and (4-Me)Ph (15)) were isolated by reaction of complexes 8 and 9 as a starting material under 1 bar of CO at room temperature. The crystal and molecular structures of complexes 6, 7 and 9-12 were determined by single-crystal X-ray diffraction.  相似文献   

9.
溴化对硝基苄基三苯基 (1a)、 (1b)在碳酸钾存在下与2-全氟炔酸甲酯(2)在常温下反应, 生成加合物3(当M=As时)或3和4的混合物(当M=P时), 其中3的含量随反应温度升高而增加, 当反应温度为90℃时, 产物全部为3。4c加热时转化为3c。膦加合物3或4在甲醇-水中于封管内150℃加热, 发生P-C键断裂。两者都立体专一性地生成(Z)3-全氟烷基-4-对硝基苯基-3-丁烯酸甲酯(5)。胂加合物3在甲醇-水中回流, 发生As-C键断裂, 生成(Z)-5。对水解机理进行了研究。  相似文献   

10.
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2).  相似文献   

11.
The thermolysis of the phosphinidene complex [Cp*P[W(CO)5]2] (1) in toluene in the presence of tBuC(triple bond)CMe leads to the four-membered ring complexes [[[eta2-C(Me)C(tBu)]Cp*(CO)W(mu3-P)[W(CO)3]][eta4:eta1:eta1-P[W(CO)5]WCp*(CO)C(Me)C(tBu)]] (4) as the major product and [[W[Cp*(CO)2]W(CO)2WCp*(CO)[eta1:eta1-C(Me)C(tBu)]](mu,eta3:eta2:eta1-P2[W(CO)5]] (5). The reaction of 1 with PhC(triple bond)CPh leads to [[W(Co)2[eta2-C(Ph)C(Ph)]][(eta4:eta1-P(W(CO)5]W[Cp*(CO)2)C(Ph)C(Ph)]] (6). The products 4 and 6 can be regarded as the formal cycloaddition products of the phosphido complex intermediate [Cp*(CO)2W(triple bond)P --> W(CO)5] (B), formed by Cp* migration within the phosphinidene complex 1. Furthermore, the reaction of 1 with PhC(triple bond)CPh gives the minor product [[[eta2:eta1-C(Ph)C(Ph)]2[W(CO)4]2][mu,eta1:eta1-P[C(Me)[C(Me)]3C(Me)][C(Ph)](C(Ph)]] (7) as a result of a 1,3-dipolaric cycloaddition of the alkyne into a phosphaallylic subunit of the Cp*P moiety of 1. Compounds 4-7 have been characterized by means of their spectroscopic data as well as by single-crystal X-ray structure analysis.  相似文献   

12.
One mononuclear iron(II)-phenylpyruvate complex [Tp(Ph2)Fe(II)(PPH)] (1) of the tridentate face-capping Tp(Ph2) ligand and two dinuclear iron(II)-phenylpyruvate enolate complexes [(6-Me3-TPA)2Fe(II)2(PP)]2+ (2) and [(6-Me3-TPA)2Fe(II)2(2-NO2-PP)]2+ (3) of the tetradentate 6-Me3-TPA ligand are reported to demonstrate two different binding modes of phenylpyruvate to the iron(II) centers. Phenylpyruvate binds in a kappa2-(O,O) manner to the mononuclear Fe(II)(Tp(Ph2)) center of 1 but bridges in a kappa3-(O,O,O) fashion to the two Fe(II)(6-Me3-TPA) centers of 2 and 3. Mononuclear complex 1 reacts with O2 to undergo oxidative decarboxylation and ortho-hydroxylation of one of the aromatic rings of the Tp(Ph2) ligand. In contrast, dinuclear complexes 2 and 3 react with O2 to undergo oxidative cleavage of the C2-C3 bond of phenylpyruvate.  相似文献   

13.
The recent discovery of acireductone dioxygenase (ARD), a metalloenzyme containing a mononuclear octahedral Ni(II) center, necessitates the development of model systems for evaluating the role of the metal center in substrate oxidation chemistry. In this work, three Ni(II) complexes of an aryl-appended tris((2-pyridyl)methyl)amine ligand (6-Ph(2)TPA, N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (1), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))]ClO(4) (3), and [(6-Ph(2)TPA)Ni-Cl(CH(3)CN)]ClO(4) (4), and one Ni(II) complex of tris((2-pyridyl)methyl)amine, [(TPA)Ni(CH(3)CN)(H(2)O)](ClO(4))(2) (2), have been characterized in acetonitrile solution using conductance methods and NMR spectroscopy. In acetonitrile solution, 1-4 have monomeric cations that exhibit isotropically shifted (1)H NMR resonances. Full assignment of these resonances was achieved using one- and two-dimensional (1)H NMR techniques and (2)H NMR of analogues having deuteration of the supporting chelate ligand. COSY cross peaks were observed for pyridyl protons of the 6-Ph(2)TPA ligand in 1 and 3. This study lays the groundwork for using NMR methods to examine chemical reactions of 1 and 2 with model substrates of relevance to ARD.  相似文献   

14.
Nickel-catalyzed     
Oxabenzonorbornadienes 1 and 2 and azabenzonorbornadiene 3 undergo [2+2] cycloaddition with alkynes (PhC triple bond Ph, PhC triple bond CMe, PhC triple bond CCO2Et, PhC triple bond CCH(OEt)2, and HC triple bond C(CH2)4Me) in the presence of [Ni(PPh3)2Cl2], PPh3, and Zn powder in toluene to afford the corresponding exo-cyclobutene derivatives 4a-e, 5a-e, and 6 in fair to excellent yields. Under similar conditions. EtCO2C triple bond CCO2Et does not react with 1 in toluene to give the [2+2] cycloaddition product, but in acetonitrile, the catalytic [2+2] cycloaddition proceeds and cycloadduct 4 f is isolated in 83% yield. At high temperature, these cyclobutene derivatives readily undergo ring expansion to yield the corresponding 8-membered carbocyclic dienes. Thus, flash vacuum pyrolysis of 4a, 4d, 4f, 6, and 14 at 500 degrees C affords dienes 13a-d and 15 in 70-96% yields. This interesting ring expansion may be viewed as the insertion of an alkyne moiety into the carbon-carbon double bond of a cyclic olefin resulting in the enlargement of the ring by two carbons. Compound 13a is readily deoxygenated by TiCl4 and Zn in THF to give a cyclooctatetraene derivative 16 in 89% yield.  相似文献   

15.
The synthesis and characterization of novel cis-1,2-disilylenylethene [cis-LSi{C(Ph)=C(H)}SiL] (2; L=PhC(NtBu)(2)) and a singlet delocalized biradicaloid [LSi(μ(2)-C(2)Ph(2))(2)SiL] (3) are described. Compound 2 was prepared by the reaction of [{PhC(NtBu)(2)}Si:](2) (1) with one equivalent of PhC[triple chemical bond]CH in toluene. Compound 3 was synthesized by the reaction of 1 with two equivalents of PhC[triple chemical bond]CPh in toluene. The results suggest that the reaction proceeds through an [LSi{C(Ph)==C(Ph)}SiL] intermediate, which then reacts with another molecule of PhC[triple chemical bond]CPh to form 3. Compounds 2 and 3 have been characterized by X-ray crystallography and NMR spectroscopy. X-ray crystallography and DFT calculations of 3 show that the singlet biradicals are stabilized by the amidinate ligand and the delocalization within the "Si(μ(2)-C(2)Ph(2))(2)Si" six-membered ring.  相似文献   

16.
J Seo  E Kim 《Inorganic chemistry》2012,51(15):7951-7953
Inspired by the CO(2)-reductatse activity of tungsten-dependent formate dehydrogenases (W-FDHs), a reduced W-FDH model, [W(IV)(OH)(S(2)C(2)Ph(2))(2)](-), was prepared in situ through hydrolysis of [W(IV)(OPh)(S(2)C(2)Ph(2))(2)](-) (1) and its reactivity with CO(2) was investigated. The reaction between [W(IV)(OH)(S(2)C(2)Ph(2))(2)](-) and CO(2) at room temperature leads to the formation of [W(IV)(O)(S(2)C(2)Ph(2))(2)](2-) (2), which slowly oxidizes to [W(V)(O)(S(2)C(2)Ph(2))(2)](-) (3). Isotopic labeling experiments reveal that the O atom in CO(2) incorporates into 3. This implies that there is carbonic anhydrase like activity, in which carbonation and decarboxylation are mediated by a bis(dithiolene)tungsten complex.  相似文献   

17.
A highly regio- and stereoselective ring-opening addition of alkenylzirconium reagents to bicyclic olefins catalyzed by nickel complexes was described. Treatment of 7-oxa- and 7-azabenzonorbornadienes (1a-e) with various terminal alkenylzirconium reagents 2a-f (Cp(2)ZrClCH=CHR; R = t-Bu, n-Pr, n-Oct, 1-cyclohexenyl, SiMe(3), and Ph) in the presence of Ni(PPh(3))(2)Cl(2) and Zn powder (or a combination of ZnCl(2) and NEt(3)) in dry THF at 50 degrees C afforded the corresponding cis-2-alkenyl-1,2-dihydronaphthalene derivatives 3a-l in moderate to excellent yields. Under similar reaction conditions, internal alkenylzirconium reagents 2g,h (Cp(2)ZrClCR=CHR: R = Et and n-Pr) also undergo ring-opening addition to oxanorbornadienes 1a and 1d to give cis-2-alkenyl-1,2-dihydronaphthalene derivatives 4a-c in good yields. Possible pathways involving the transfer of alkenyl group in the alkenylzirconium reagent to the Ni(II) center followed by migration of the alkenyl group from the Ni(II) center to the carbon-carbon double bond of 7-oxanorbornadiene or the reaction of 7-oxanorbornadiene with Ni(0) to form a Ni(II)-pi-allyl prior to the transfer of the alkenyl group as key steps for the catalytic reaction were proposed and discussed.  相似文献   

18.
The first examples of insertion of a C(triple bond)C bond of an alkyne into a C(carbene)-Calpha single bond of a carbene complex (C-Calpha insertion) are reported. (prim-Alkyl)carbene complexes [(OC)(5)M=C(OEt)CH(2)R] (1 a-f; M=Cr, W; R=nPr, C(7)H(7), Ph) undergo C-Calpha insertion of electron-deficient alkynes [PhC(triple bond)CC(XEt)NMe(2)]BF(4) (5 a,b; X=O, S) to give zwitterionic carbiminium carbonylmetalates 3 a-g, which are thermally transformed into (CO)(4)M chelate carbene complexes 4 a-g by elimination of CO. The overall reaction is highly regio- and stereoselective. It involves an unprecedented metalla(di-pi-methane) rearrangement as the key step.  相似文献   

19.
The present study focuses on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes formed in the [Fe(III)(tpfpp)X]/H(2)O(2)/HOO(-) system (TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; X=Cl(-) or CF(3) SO(3)(-)) in acetonitrile under basic conditions at -15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high-spin [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] could be observed with the application of a low-temperature rapid-scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O-O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo- to heterolytic O-O bond cleavage is observed for high- [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron-rich porphyrin ligands, electron-deficient [Fe(III)(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [Fe(III)(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)-oxo porphyrin π-cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号