首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The damage left by high-current-density, 9 A/cm2, implants of 120 keV phosphorus into 100 and 111 silicon oriented substrates was investigated as a function of the fluence in the range 4×1015–1.5×1016/cm2. The samples were analyzed by 2 MeV He+ channeling and transmission electron microscopy. Initially a buried amorphous layer forms at low fluences until the wafer temperature saturates at 450 °C at a fluence of 4.5×1015/cm2. As the fluence is further increased ion-assisted regrowth of this initial buried amorphous layer takes place and is 2 to 2.5 times faster (with respect to ion fluence) for 100 substrates than for 111 substrates. At higher fluences, most of the residual damage is located at a depth equal to the sum of the projected range and of the straggling. In the regrown layers twins are found in both orientations, and in some cases a hexagonal silicon phase is present at high fluences. The results are compared with the ion assisted regrowth of amorphous layers at well defined temperatures in the 250°–400 °C range.  相似文献   

2.
Excimer laser doping of GaAs using sulphur adsorbate as a dopant source is demonstrated. Box-like n-type layers of depths of about 100 nm with carrier concentration as high as (23)×1019 cm–3 are formed. Passivation of GaAs using a (NH4)2Sx solution for 40 min followed by sublimation of the excess sulphur atoms in high vacuum result in an effective dopant for controllable n-type doping. The samples are irradiated using a KrF excimer laser in a N2 gaseous environment. Secondary ion mass spectrometry (SIMS) measurements show that sulphur is successfully incorporated in the GaAs. The sheet resistance is controlled by adjusting the laser energy fluence and number of laser pulses. Rutherford backscattering spectrometry with channeling (RBS/C) alignment measurement indicates that lattice damage is undetectable for N2 gas pressures of 760 Torr.  相似文献   

3.
IR integrated photonic amplifiers at 1.55m operation will have good foreground in optical phasedarray radars for splitters and signal processing. The saturation gain characteristics of IR integrated photonic waveguide amplifiers (taken Er3+Yb3+ co-doped phosphate glass waveguide amplifiers as an example) are studied theoretically. For the homemade laser glass materials the calculated saturation intensities are 2.22kw /cm2 for signal and 10.15kw/cm2 for pump. The effects of absorption saturation of signal and pump lights on the gain of amplifiers are discussed.  相似文献   

4.
The possibility to fabricate high-mobility polysilicon TFTs by nanosecond pulsed laser crystallization of unhydrogenated amorphous Si thin films has been investigated. Two types of lasers have been used: a large area ( 1 cm2) single ArF excimer laser pulse and a small diameter ( 100 m) frequency-doubled Nd:YAG laser beam, working in the scanning regime. Processed films have been characterized in detail by different optical and microscopic techniques. Device performances indicate that the best results are achieved with the excimer laser leading to high mobility values (up to 140 cm2/Vs) which are much larger than in polysilicon TFTs fabricated onto the same quartz substrates by low-temperature thermal (630° C) crystallization of amorphous Si films (fe55 cm2/Vs).  相似文献   

5.
The effect of 2.0 MeV Cu+ irradiation on Si(100) crystal has been studied by the Rutherford backscattering/channeling technique. Analysis of the lattice disorder distribution has been performed under 100 direction of tilting off from the target normal: 7°, 30°, and 45° as well as different doses. The lattice disorder distributions in Si(100) have been compared with TRIM'89 simulation. The results show that the lattice disorder distributions in Si(100) under different irradiation angles seem to be in good agreement with TRIM'89 simulation. When the dose increases up to 8.7×1014 ions/cm2, the defect concentration increases leading to the formation of an amorphous layer.  相似文献   

6.
We report a high-power source of coherent picosecond light pulses based on optical parametric generation and amplification in LiB3O5 and AgGaS2 crystals. The spectral range of this continuously tunable source covers the visible, near-infrared and medium-infrared spectrum from 0.41 to 12.9 m. An optical parametric generator and amplifier, consisting of two type-I phase-matched LiB3O5 crystals and a diffraction grating, is pumped by the third harmonic of a picosecond Nd:YAG laser and provides spectrally narrow, high-power pulses from 0.41 to 2.4 m. Energy conversion efficiencies up to 16 percent are achieved. The pulse duration is about 14 ps, the bandwidth between 10 and 30 cm–1. The tuning range is extended to 12.9 m by mixing the infrared output between 1.16 and 2.13 m with the fundamental of the Nd:YAG laser in type-I-phase-matched AgGaS2 crystals. Up to 25 percent of the pulse energy at 1.064 m is converted into parametric infrared pulses. Bandwidths between 3 and 8 cm–1 and a pulse duration of approximately 19 ps are measured for these pulses. We also observe a retracing behaviour in the tuning curve of AgGaS2 not reported before.  相似文献   

7.
Clean ablation of poly(tetrafluoroethylene) (PTFE) at etch rates in excess of 7µm/pulse has been achieved with an excimer laser using 308nm radiation and a 25 ns pulse width. This was accomplished by doping the ultraviolet-transparent PTFE polymer with polyimide. Ablation rates were investigated as a function of fluence in the range from 1 to 12J/cm2 and dopant levels up to 15% (wt/wt). Results show that at a given fluence there exists an optimum absorption coefficient max, for which maximum ablation rates are achieved. The value of max was found to decrease with increasing fluence. The relationship between max and fluence was determined from existing ablation rate models and found to compare favorably with empirical results.  相似文献   

8.
Bone ablation using different pulse parameters and four emission lines of 9.3, 9.6, 10.3, and 10.6 m of the CO2 laser exhibits effects which are caused by the thermal properties and the absorption spectrum of bone material. The ablation mechanism was investigated with light- and electron-microscopy at short laser-pulse durations of 0.9 and 1.8 s and a long pulse of 250 s. It is shown that different processes are responsible for the ablation mechanism either using the short or the long pulse durations. In the case of short pulse durations it is shown that, although the mineral components are the main absorber for CO2 radiation, water is the driving force for the ablation process. The destruction of material is based on explosive evaporation of water with an ablation energy of 1.3 kJ/cm3. Histological examination revealed a minimal zone of 10–15 m of thermally altered material at the bottom of the laser drilled hole. Within the investigated spectral range we found that the ablation threshold at 9.3 and 9.6 m is lower than at 10.3 and 10.6 m. In comparison the ablation with a long pulse duration is determined by two processes. On the one side, the heat lost by heat conduction leads to carbonization of a surface layer, and the absorption of the CO2 radiation in this carbonized layer is the driving force of the ablation process. On the other side, it is shown that up to 60% of the pulse energy is absorbed in the ablation plume. Therefore, a long pulse duration results in an eight-times higher specific ablation energy of 10 kJ/cm3.  相似文献   

9.
The absorption of laser light in 0.25–1 mm diameter gold cavities, irradiated for the purpose of generating high-temperature blackbody radiation with intense laser radiation of either =0.44 m or =1.3 m wavelength, was investigated. For =0.44 m radiation the absorption exceeded 0.9 for all conditions, but dropped to only 0.3 for the smallest cavities irradiated at =1.3 m. Entrance hole and cavity filling with plasma seems important for the understanding of the observations.  相似文献   

10.
The entire sodium ion content of sodium alumina (Na1.67Mg0.67Al10.33O17) can be replaced with a variety of lanthanide ions by simple diffusion reactions at moderate temperatures (500–700°C). Lanthanide alumina crystals are hard, clear, chemically stable, and have well-defined crystal structures. The fluorescence spectrum of Nd3+ in alumina is similar to that in YAG. The lifetime of the4 F 3/2 state of Nd3+ in completely-exchanged alumina (350s at 1021 Nd3+ cm–3) is about 45% longer than in YAG (240s at 1020Nd3+ cm–3). The lanthanide aluminas may be of considerable interest as new phosphor and laser host materials.  相似文献   

11.
A detailed study of the gain dynamics of the pulsed, optically pumped 4.3 m CO2 laser is described. Small-signal gain coefficients as high as 14%/cm are measured in a 4.3 m amplifier using low-power pulses from a 4.3 m probe laser. The measurements are compared with a rate-equation model and good quantitative agreement is obtained. The model, which uses no adjustable parameters, is described in detail. Gain is studied as a function of optical pumping power, gas mixture, gas pressure and discharge excitation of the 4.3 m amplifier. Optimization of the gain is discussed.  相似文献   

12.
Removal of rhodamine 6G doped polyurethane insulation coated onto 50 m diameter wire is shown to proceed efficiently and cleanly by irradiation with 532 nm Q-switched pulses from a Nd:YAG laser. The stripping action produced by this method is similar in quality to excimer laser wirestripping. Several experimental parameters were explored including fluence, pulse duration, dye concentration, and the number of incident pulses. Acceptable stripping conditions were obtained for a 3–5 s exposure at 10 Hz, using a dye concentration of 10% by weight, and 12 n pulses at 650 mJ/cm2. Nearly 0.5 m/pulse is removed at this fluence, which exceeds the threshold fluence of 600 mJ/cm2 by only 50 mJ/cm2. The measured 532 nm absorption coefficient of the 10% dye-doped polyurethane was 4×104 cm–1. Lower fluences and/or dye concentrations produced inadequate stripping, while shorter duration pulses caused unacceptable melting of the thin gold layer which covered the copper core of the wire. Pulse-by-pulse photographs of the stripping action clearly show melting of the dye/polymer insulation, and thermal rollback of the insulation near the stripped end. Regardless, excellent edge definition is obtained by this method.  相似文献   

13.
A novel continuous-wave mid-infrared distributed feedback interband cascade laser was utilized to detect and quantify formaldehyde (H2CO) using quartz-enhanced photoacoustic spectroscopy. The laser was operated at liquid-nitrogen temperatures and provided single-mode output powers of up to 12 mW at 3.53 m (2832.5 cm-1). The noise equivalent (1) detection sensitivity of the sensor was measured to be 2.2×10-8 cm-1W(Hz)-1/2 for H2CO in ambient air, which corresponds to a detection limit of 0.6 parts in 106 by volume (ppmv) for a 10 s sensor time constant and 3.4 mW laser power delivered to the sensor module. PACS 42.62.Fi; 72.50.+b  相似文献   

14.
Successive band-splitting transitions occur in the one-dimensional map xi+1=g(xi),i=0, 1, 2,... withg(x)=x, (0 x 1/2) –x +, (1/2 <x 1) as the parameter is changed from 2 to 1. The transition point fromN (=2n) bands to 2Nbands is given by=(2)1/N (n=0, 1,2,...). The time-correlation function i=xix0/(x0)2,xi xi–xi is studied in terms of the eigenvalues and eigenfunctions of the Frobenius-Perron operator of the map. It is shown that, near the transition point=2, i–[(10–42)/17] i,0-[(102-8)/51]i,1 + [(7 + 42)/17](–1)ie–yi, where2(–2) is the damping constant and vanishes at=2, representing the critical slowing-down. This critical phenomenon is in strong contrast to the topologically invariant quantities, such as the Lyapunov exponent, which do not exhibit any anomaly at=2. The asymptotic expression for i has been obtained by deriving an analytic form of i for a sequence of which accumulates to 2 from the above. Near the transition point=(2)1/N, the damping constant of i fori N is given by N=2(N-2)/N. Numerical calculation is also carried out for arbitrary a and is shown to be consistent with the analytic results.  相似文献   

15.
Optically pumped laser emission has been observed on the NaK 2(A)1+ 1(X)1+ electronic state transition. The emission occurs between 1.015 and 1.035 m when a sodium-potassium heat-pipe oven is pumped with 695–745 nm pulsed dye laser radiation. The laser emission occurs on many ro-vibrational transitions without the use of cavity mirrors. However, the addition of a simple cavity increases both the number of observed lasing transitions and the amplitude of the emission on each line. We report our results for the dependence of the emission intensity on pump laser power, oven temperature, and buffer gas pressure.  相似文献   

16.
Holographic gratings with grating periods between 0.37 m and 4.4 m, respectively, were recorded on the surface of TS-diacetylene single crystals by two interfering 257 nm laser beams. Diffraction efficiencies of up to 35 % were obtained for readout with red light of = 633 nm. The main modulation mechanism was phase modulation. The spatial resolution was better than 1600 lines/mm. The upper limit of the polymer chain length was 0.6 m. The holographic sensitivity was 4.5 cm2/J for immediate read-out at 633 nm without processing after exposure. — A weakly exposed latent hologram may be developed simply by gentle annealing the crystal which increases the sensitivity by one order of magnitude.  相似文献   

17.
We report on the possibility to measure the wave-lengths of pulsed single-mode lasers by means of a two-beam Michelson interferometer in motion [1,2]. The corner reflector moves with a nearly constant speed creating a path differenceL so thatL/C 1/, being the spectral width of the laser to be measured. The reference laser is a stabilized He-Ne (Spectra-Physics, model 117 A) to a precision of the order of two parts in 109. The fringe pattern of the two beams (reference beam and measured beam) is sampled simultaneously with a repetition rate of 40 ms. With this new method, the frequency doubled injection-seeded Nd: YAG laser wavelength has been measured with an accuracy of the order of 1.5 in 1083 × 10–4 cm–1 at 532nm.  相似文献   

18.
Nodular iron of martensitic structure was treated by means of a XeCl laser prototype. The energy density varied from 0.3 to 5 J/cm2 and the number of shots from 4 to 40. Conversion electron Mössbauer spectroscopy, conversion X-ray Mössbauer spectroscopy and grazing incidence X-ray diffraction were used to characterize the irradiated surface. Some Rutherford backscattering spectrometry measurements were performed to control surface oxidation and carbon distribution. It is shown that after irradiation austenite formed in a rather deep heat affected zone (10–20 m) compared to the thickness of the melted zone ( 1 m). The austenite amount as well as its carbon content increase with energy density and number of shots up to a threshold of carbide formation. Beyond the threshold Fe2C, Fe3C and Fe5C2 formed only in the melted zone. The carbon content as a function of depth is constant in the melted layer, then decreases quickly from the melted layer-heat affected zone interface down its initial value. The carbon content is shown to govern the evolution of phases content in the melted layer depending on the laser treatment conditions.  相似文献   

19.
A tunable harmonic output power of 18 W at a wavelength of =370 nm is obtained by resonance-enhanced frequency doubling of an optically-stabilized semiconductor laser. A commercially available AlGaAs laser diode which emits a maximum power of 10 mW at =740 nm is operated in an extended-cavity configuration. Dispersion prisms are used in the extended cavity to obtain longitudinal-mode selection with low loss of optical power. The output is focussed into an optically isolated high-finesse ring resonator which contains a LiIO3 crystal for second-harmonic generation. One potential application of this laser source is the optical excitation and laser cooling of ytterbium in an ion trap. In a related demonstration experiment, the frequency-doubled diode laser is applied to excite the =369.5 nm 2 S 1/2-2 P 1/2 transition of ytterbium ions in a hollow-cathode discharge.  相似文献   

20.
A narrowband far-infrared laser on intersubband transitions of hot holes was constructed and investigated. Two methods were used: mode selection due to intercavity Fabry-Perot resonator and selection of a narrow spectral lasing region by special multilayer mirror. The emission spectra of the laser were determined. The radiation bandwidth measured was 0.2 cm-1 as compared with 15–30 cm-1 for nonselective resonator. Lasing with selective resonator could occur at any two wavelengths in the ranges 80–120 and 150–200 m. The wavelength was modified by altering electric and magnetic fields. The radiation power was about 10 W and of the same kind as that of a laser without a mode selector. The narrowband laser was used in investigation of CR of electrons in n-InSb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号