首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31, No. 1, pp. 79–86, January, 1995.  相似文献   

6.
7.
8.
Conclusion Using the method of differential trigonometric series, distinguished by its correctness and generality and the fact that it gives exact solutions for boundary-value problems, we obtained a new solution to the problem of thermal sresses in an unevenly heated plate, as well the problem of the deformation of a freely supported plate under the influence of moments uniformly distributed over its edges. The series entering into the deflections and bending and turning moments converge, and the solution coincides with well-known solutions.Nikolaev Institute of Shipbuiding. Translated from Prikladnaya Mekhanika, Vol. 17, No. 9, pp. 69–75, September, 1981.  相似文献   

9.
10.
11.
The constructions made of bars and plates with holes, openings and bulges of various forms are widely used in modern industry. By loading these structural elements with different efforts, there appears concentration (accumulation) of stress whose values sometimes exceeds the admissible one. The durability of the given element is defined according to the quantity of these stresses. Since the failure of details and construction itself begins from the place where the stress concentration has the greatest value.

Therefore the exact determination of stress distribution in details (bars, plates, beams) is of great scientific and practical interest and is one of the important problems of the solid fracture.

Compound details (when the nucleus of different material is soldered to the hole) are often used to decrease the stress concentration.

In the present paper, we study a stress–strain state of polygonal plate weakened by a central elliptic hole with two linear cracks info which a rigid nucleus (elliptic cylinder with two linear bulges) of different material was put in (soldered) without preload.

The problem is solved by a complex variable functions theory stated in papers [Theory of Elasticity, Higher School, Moscow, 1976, p. 276; Plane Problem of Elasticity Theory of Plates with Holes, Cuts and Inclusions, Publishing House Highest School, Kiev, 1975, p. 228; Bidimensional Problem of Elasticity Theory, Stroyizdat, Moscow, 1991, p. 352; Science, Moscow (1996) 708; MSB AH USSR OTH 9 (1948) 1371].

Kolosov–Mushkelishvili complex potential (z) and ψ(z) satisfying the definite boundary conditions are sought in the form of sums of functional series.

After making several strict mathematical transformations, the problem is reduced to the solution of a system of linear algebraic equations with respect to the coefficients of expansions of functions (z) and ψ(z).

Determining the values of (z) and ψ(z), we can find the stress components σr, σθ and τrθ at any point of cross-section of the plate and nucleus on the basis of the known formulae. The obtained solution is illustrated by numerical example.

Changing the parameters A1, m1, e, A2, and m2 we can get the various contour plates.

For example, if we assume m1=0, A1=r, then the internal contour of L1 becomes the circle of radius r with two rectilinear cracks (for the nucleus––a rectilinear bulges).

Further, if we assume a small semi-axis of the ellipse b1 to be equal to zero (b1=0), then a linear crack becomes the internal contour of L1 (and the nucleus becomes the linear rigid inclusion made of other material). For m2=0; A2=R, the external contour L2 turns into the circle of radius R.

The obtained method of solution may be applied and in other similar problems of elasticity theory; tension of compound polygonal plate, torsion and bending of compound prismatic beams, etc.  相似文献   


12.
The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength gpi situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t = τ. A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r = b. The governing heat conduction equation is solved by using the integral transform method, and results are obtained in series form in terms of Bessel functions. The mathematical model has been constructed for copper material and the thermal stresses are discussed graphically.  相似文献   

13.
14.
15.
16.
The steady laminar flow and thermal characteristics of a continuously moving vertical sheet of extruded material are studied close to and far downstream from the extrusion slot. The velocity and temperature variations, obtained by a finite volume method, are used to map out the entire forced, mixed and natural convection regimes. The effects of the Prandtl number (Pr) and the buoyancy force parameter (B) on the friction and heat transfer coefficients are investigated. Comparisons with experimental measurements and solutions by others in the pure forced and pure natural convection regions are made. In the mixed convection region, the results are compared with available finite-difference solutions of the boundary layer equations showing excellent agreement. The region close to the extrusion slot is characterized as a non-similar forced-convection dominated region in which NuxRex−1/2 drops sharply with increasing Richardson number (Rix). This is followed by a self-similar forced-convection dominated region in which NuxRex−1/2 levels off with increasing Rix until the buoyancy effect sets in. The existence and extent of the latter region depend upon the value of B. A non-similar mixed convection region where increasing buoyancy effect enhances the heat transfer rate follows. Finally, this region is followed downstream by a self-similar natural-convection dominated region in which NuxRex−1/2 approaches the pure natural convection asymptote at large Rix. Critical values of Rix to distinguish the various convection regimes are determined for different Pr and B.  相似文献   

17.
18.
Classical thermo-viscoelastic models may be challenged to predict the precise thermo-mechanical behavior of viscoelastic materials without considering the memorydependent effect. Meanwhile, with the miniaturization of devices, the size-dependent effect on elastic deformation is becoming more and more important. To capture the memory-dependent effect and the size-dependent effect, the present study aims at developing a modified fractional-order thermo-viscoelastic coupling model at the microscale...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号