首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient grating experiments performed with evanescent fields resulting from total internal reflection at an interface between a polar absorbing solution and an apolar transparent solvent are described. The time evolution of the diffracted intensity was monitored from picosecond to millisecond time scales. The diffracted signal originates essentially from two density phase gratings: one in the absorbing phase induced by thermal expansion and one in the transparent solvent due to electrostriction. A few nanoseconds after excitation, the latter grating is replaced by a thermal grating due to thermal diffusion from the absorbing phase. The speed of sound and the acoustic attenuation measured near the interface are found to be essentially the same as in the bulk solutions. However, after addition of a surfactant in the polar phase, the speed of sound near the interface differs substantially from that in the bulk with the same surfactant concentration. This effect is interpreted in terms of adsorption at the liquid/liquid interface. Other phenomena, which are not observed in bulk experiments, such as acoustic echoes and a fast oscillation of the signal intensity, are also described.  相似文献   

2.
《Fluid Phase Equilibria》1999,161(2):337-351
Dynamic light scattering can be used for the determination of several thermophysical properties of interest using one single experimental setup. Light scattering from bulk fluids allows the measurement of thermal diffusivity and sound velocity. Results are presented for toluene, an important reference fluid, over a wide temperature range up to the critical point at saturation conditions for both the liquid and the vapour phase. Furthermore, it is demonstrated that the same setup can be used for the determination of surface tension and kinematic viscosity of the liquid phase from light scattering by surface waves on a vertical liquid layer. All experiments are based on a heterodyne detection scheme and signal analysis by photon correlation spectroscopy. The results are discussed in comparison with literature data.  相似文献   

3.
We investigated the acoustic and thermal features of a polymeric system by a heterodyne detected transient grating technique. We studied two polymers characterized by different molecular weights. Transient grating experiments could reveal a reliable series of information on sound velocity, acoustic damping time, and thermal diffusion of the polymers. The temperature and molecular weight dependence of the polymer acoustic and thermal properties are reported. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

4.
The propagation of sound waves in suspensions of hard sphere colloids is studied as a function of their volume fraction up to random close packing using Brillouin light scattering. The rich experimental phonon spectra of up to five phonon modes are successfully described by theoretical calculations based on the multiple scattering method. Two main types of phonon modes are revealed: Type A modes are acoustic excitations which set up deformations in both the solid (particles) and the liquid (solvent) phases; for type B modes the stress and strain are predominantly localized near the interface between the solid particles and the surrounding liquid (interface waves). While the former become harder (increase their effective sound velocity) as the particle volume fraction increases the latter become softer (the corresponding sound velocity decreases).  相似文献   

5.
Resonant pump polarizability response spectroscopy (RP-PORS) was used to study the isotropic and anisotropic solvent structural relaxation in solvation. RP-PORS is the optical heterodyne detected transient grating (OHD-TG) spectroscopy with an additional resonant pump pulse. A resonant pump excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored by the OHD-TG spectroscopy. This experimental method allows measuring the dispersive and absorptive parts of the signal as well as fully controlling the beam polarizations of incident pulses and signal. The experimental details of RP-PORS were described. By performing RP-PORS with Coumarin 153(C153) in CH(3)CN and CHCl(3), we have successfully measured the isotropic and anisotropic solvation polarizability spectra following electronic excitation of C153. The isotropic solvation polarizability responses result from the isotropic solvent structural relaxation of the solvent around the solute whereas the anisotropic solvation polarizability responses come from the anisotropic translational relaxation and orientational relaxation. The solvation polarizability responses were found to be solvent-specific. The intramolecular vibrations of CHCl(3) were also found to be coupled to the electronic excitation of C153.  相似文献   

6.
Although the carbon nanotube (CNT) features superior thermal properties in its pristine form, the chemical functionalization often required for many applications of CNT inevitably degrades the structural integrity and affects the transport of energy carriers. In this article, the effect of the side wall functionalization on the phonon energy transmission along the symmetry axis of CNT is studied using the phonon wave packet method. Three different functional groups are studied: methyl (-CH(3)), vinyl (-C(2)H(3)), and carboxyl (-COOH). We find that, near Γ point of the Brillouin zone, acoustic phonons show ideal transmission, while the transmission of the optical phonons is strongly suppressed. A positive correlation between the energy transmission coefficient and the phonon group velocity is observed for both acoustic and optical phonon modes. On comparing the transmission due to functional groups with equivalent point mass defects on CNT, we find that the chemistry of the functional group, rather than its molecular mass, has a dominant role in determining phonon scattering, hence the transmission, at the defect sites.  相似文献   

7.
The phenomenology of sound speeds in fluid mixtures is examined near and across critical lines. Using literature data for binary and ternary mixtures, it is shown that the ultrasound speed along an isotherm-isopleth passes through a minimum value in the form of an angular (or V-shaped) point at critical states. The relation between critical and pseudo-critical coordinates is discussed. For nonazeotropic fixed-composition fluid mixtures, pseudo-critical temperatures and pressures are found to be lower than the corresponding critical temperatures and pressures. The analysis shows that unstable pseudo-critical states cannot be detected using acoustic methods. The thermodynamic link between sound speeds and isochoric heat capacities is formulated and discussed in terms of p-Vm-T derivatives capable of being calculated using cubic equations of state. Based on the Griffiths-Wheeler theory of critical phenomena, a new specific link between critical sound speeds and critical isochoric heat capacities is deduced in terms of the rate of change of critical pressures and critical temperatures along the p-T projection of the critical locus of binary fluid mixtures. It is shown that the latter link can be used to obtain estimates of critical isochoric heat capacities from the experimental determination of critical speeds of sound. The applicability domain of the new link does not include binary systems at compositions along the critical line for which the rate of change in pressure with temperature changes sign. The new equation is combined with thermodynamic data to provide approximate numerical estimates for the speed of sound in two mixtures of carbon dioxide and ethane at different temperatures along their critical isochores. A clear decrease in the sound speed is found at critical points. A similar behavior is suggested by available critical heat capacity data for several binary fluid mixtures. Using an acoustic technique, the critical temperature and pressure were determined for three different mixtures of methane and propane, and compared with literature data obtained using conventional methods. It is concluded that acoustic-based techniques are reliable to determine, for the most part, critical surfaces of fluid mixtures. The remaining few cases where the present analysis cannot be applied could be tested by the thermodynamic calculation of critical sound speeds using crossover equations of state in conjunction with experimentally determined critical isochoric heat capacities.  相似文献   

8.
The rotation of the plane of polarization of linearly polarized light by chiral molecules in solution is due to a forward scattering event. Ordinary optical rotation, a single-photon effect, is independent of intensity. As the light intensity is increased, other effects can appear, such as two-photon scattering or alignment of the molecule by one photon and scattering with a change of polarization by another. Both of these effects result in intensity-dependent (or nonlinear) optical rotation. A polarimeter was used to measure the nonlinear optical rotation of solutions in a heterodyne experiment. No nonlinear optical rotation was found in molecules lacking an absorption band near the laser frequency. In the three pyrimidine nucleosides studied, which do have such an absorption band, a nonlinear optical rotation was identified that was cumulative with each laser pulse. The effect persisted with a time constant that was on the order of seconds and characteristic of the molecule.  相似文献   

9.
A new model of calculating the self-association constants in mixtures of two liquids, an associating solute and a nonassociating solvent, is proposed and analyzed. The model assumes additivity of the time of transmission of the acoustic signal with the volume fractions of the components of the mixture. The model was tested for different systems, showing that the results are reliable and close to expectations. The presented attempt seems to be an interesting alternative in interpreting the experimental results of sound velocity measurements in liquid mixtures.  相似文献   

10.
An investigation of the molecular dynamics in pure liquids and in mixtures through the technique of time resolved optical Kerr effect is performed. The samples studied were the mixtures of carbon disulfide (CS(2)) with benzene (C(6)H(6)). The molecular dynamics of the pure liquids is briefly discussed while the main results are obtained for the mixtures. A slow dynamics component is observed for the optical heterodyne detected optical Kerr effect transient decaying exponentially with time constants on picosecond time scale. The fast subpicosend time relaxations are analyzed in terms of the nondiffusive component of the spectral response that is associated with the molecular dynamics. The modifications of the spectrum are quantified, and the explanation of the observed changes is given in terms of the structural interaction configurations that produced changes in the intermolecular potential within which the molecules execute librational motions.  相似文献   

11.
We observed phase transition and phase relaxation processes of a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution using the heterodyne transient grating (HD-TG) method combined with the laser temperature jump technique. The sample temperature was instantaneously raised by about 1.0 K after irradiation of a pump pulse to crystal violet (CV) molecules for heating, and the phase transition was induced for the sample with an initial temperature just below the lower critical solution temperature (LCST); the following phase relaxation dynamics was observed. Turbidity relaxation was observed in both the turbidity and HD-TG responses, while another relaxation process was observed only in the HD-TG response, namely via the refractive index change. It is suggested that this response is due to formation of globule molecules or their assemblies since they would have nothing to do with turbidity change but would affect the refractive index, which is dependent on the molar volume of a chemical species. Furthermore, the grating spacing dependence of the HD-TG responses suggests that the response was caused by the counter propagating diffusion of the coil molecules as a reactant species and the globule molecules as a product species and the lifetime of the globule molecules ranged from 1.5 to 5 seconds. Thus, we conclude that the turbidity reflects the dynamics of aggregate conditions, not molecular conditions. The coil and globule sizes were estimated from the obtained diffusion coefficient. The sizes of the coil molecules did not change at the initial temperatures below the LCST but increased sharply as it approaches LCST. We propose that the coil-state molecules associate due to hydrophobic interaction when the initial temperature was higher than LCST minus 0.5 K and that the globule-state molecules generated from the coil-state molecules showed a similar trend in temperature. The phase transition was also induced by heating under a microscope, and the relaxation process was followed using the fluorescence peak shift of a fluorescent molecule-labeled PNIPAM. The result also supports the existence of a globule molecule or its assembly remains for several seconds in the phase relaxation.  相似文献   

12.
Electric fields of coherent Raman signals are resolved with sensitivity for high-frequency vibrational resonances utilizing a four-pulse, trapezoidal beam geometry in a diffractive optic-based interferometer. Our experiments show that the heterodyne detected signal phase is stabilized for particular terms in the third-order response function by the cancellation of inter-pulse phases. The C-H stretching modes of cyclohexane and benzene are studied under two polarization conditions. The temporal profiles of signal fields for cyclohexane exhibit a low-frequency recurrence due to the interference between the signals associated with the symmetric and asymmetric C-H stretching modes. In contrast, the electronically nonresonant polarizability response of benzene gives rise to a significant broadband signal component in addition to that associated with its C-H vibrational resonance. Time-frequency shapes of the Raman signal fields are strongly dependent on the properties of the liquid and the polarizations of the laser pulses.  相似文献   

13.
When using a monochromator, the knowledge of the instrumental wavelength of the spectral lines is essential. In this work it was first examined how accurate these wavelengths can actually be predicted using a function which was fitted through experimental data. These data were obtained from instrumental wavelength measurements over the entire operational wavelength range. Secondly, the possible uncertainty on the instrumental wavelength was investigated and was found to be dependent on temperature changes and mechanical imprecisions. A study of the temperature effect on the instrumental wavelength was undertaken and efforts were made to trace the cause of this temperature dependence. The applicability of the prediction of wavelength shifts due to temperature changes using experimental data was tested. Having taken the necessary thermostating precautions, the remaining wavelength uncertainty for multi- and single-line analyses was isolated. In the light of experimental findings, the optical calibration procedure w.as evaluated. Finally, the need for a sound equilibrium between resolution and wavelength reproducibility was emphasized.  相似文献   

14.
Summary Techniques of scanning acoustic microscopy generally rely on local variations of such solid state parameters influencing generation or propagation of acoustic waves. Depending on the manner of impressing acoustic waves into the sample various methods are distinguished. In conventional scanning acoustic microscopy ultrasound is generated by a lens-transducer arrangement outside the sample and focussed onto or below its surface. Changes in the propagation of this ultrasound wave, like absorption and reflexion or temporal propagation delays, enable analysis of the mechanical or elastic response. At very high frequencies and with additional time-resolving detection techniques applications of this technique to surface analysis become possible. Other scanning acoustic microscopes imply the generation of sound or ultrasound directly within the sample itself due to the impact of temporarily modulated particle or photon beams. These are presently laser, electron, or ion beams. With these methods the acoustic signal as detected by a transducer attached to the sample is on principle affected by propagation properties, too, but it is dominated by local changes of the generation process for the acoustic wave, mainly because the frequency ranges used presently are associated with very long acoustic wavelengths. Depending on the physical nature of the primary probe used many sound generation mechanisms are given resulting in a large amount of different applications. By adjusting the probe parameters in a suitable manner the sound generation process can be confined to the direct vicinity of the specimen surface, which makes this technique feasible for surface characterization. The principles of the various techniques are described, and their usability for surface analysis is discussed.  相似文献   

15.
The temperature effect in aqueous solutions of a polyoxyethylene—polyoxypropylene—poloxyethylene (POE—POP—POE) block copolymer, Pluronic L-64 in water, was examined by means of viscosity, sedimentation, scattering and sound velocity measurements. Micelle formation in L-64 was strongly dependent on concentration and temperature. An increase in temperature shifted the micelle formation markedly to lower concentration; the micelle grew large particularly at temperatures near the cloud point. The viscosity data were analyzed to estimate various parameters, including the hydrated micellar volume, hydration number, hydrodynamic radius, etc. An increase in diazepam solubility in L-64 micelles with increasing concentration and temperature was observed.  相似文献   

16.
Ultrasonic measurements on praseodymium and neodymium palmitates were made in a mixture of 60% benzene and 40% dimethyl sulfoxide (V/V), to determine the critical micelle concentration (CMC), soap-solvent interaction, and various acoustic and thermodynamic parameters. The values of the CMC increase with the increase in the size of the cation in the soap molecules. The ultrasonic velocity, specific acoustic impedance, apparent molar compressibility, apparent molar volume and relative association increase while the adiabatic compressibility, intermolecular free length, solvation number, molar sound velocity and available volume decrease with increasing soap concentration.  相似文献   

17.
The A2Πu-X2Πg electronic absorption spectrum of the Cl2+ molecular cation in the region between 16820 and 17350 cm-1 was observed by employing optical heterodyne magnetic rotation enhanced velocity modulation spectroscopy. Cl2+ is a paramagnetic molecule; however, the intensities of some spectral lines, belonging to three bands whose origins are near 17282, 17324 and 16913 cm-1, respectively, remain unchanged with in the magnetic field. This indicates that both the upper and lower states have a weak Zeeman effect. The Zeeman contribution is nearly zero for the 2Π1/2 state, while nonvanishing for the 2Π3/2 state. Therefore, this behavior for the spectral assignment of Cl2+, including its isotopics was utilized and the identity of these bands was confirmed as members of the Ω=1/2 component of the electronic transition conveniently and unambiguously. The assigned bands are the (3, 7) band of the Ω=1/2 component of 35Cl+2 and 35Cl37Cl+ and the (2, 7) band of the Ω=1/2 component of 35Cl2+. It extends the range of vibrational assignments considerably in both the ground and the excited state, and leads to the successful rotational analysis. New molecular constants of Cl2+ were obtained from the observed line positions, band by band, using a weighted least squares fitting procedure.  相似文献   

18.
We illustrate how the preparation and probing of rotational Raman wave packets in O(2) detected by time-dependent degenerate four-wave mixing (TD-DFWM) can be manipulated by an additional time-delayed control pulse. By controlling the time delay of this field, we are able to induce varying amounts of additional Rabi cycling among multiple rotational states within the system. The additional Rabi cycling is manifested as a change in the signal detection from homodyne detected to heterodyne detected, depending on the degree of rotational alignment induced. At the highest laser intensities, Rabi cycling among multiple rotational states cannot account for the almost complete transformation to a heterodyne-detected signal, suggesting a second mechanism involving ionization. The analysis we present for these effects, involving the formation of static alignment by Rabi cycling at moderate laser intensities and possibly ion gratings at the highest intensities, appears to be consistent with the experimental findings and may offer viable explanations for the switching from homodyne to heterodyne detection observed in similar DFWM experiments at high laser field intensities (>10(13) W/cm(2)).  相似文献   

19.
Nanoparticle cluster arrays (NCAs) are novel electromagnetic materials whose properties depend on the size and shape of the constituent nanoparticle clusters. A rational design of NCAs with defined optical properties requires a thorough understanding of the geometry dependent optical response of the building blocks. Herein, we systematically investigate the near- and far-field responses of clusters of closely packed 60 nm gold nanoparticles (n ≤ 7) as a function of size and cluster geometry through a combination of experimental spectroscopy and generalized Mie Theory calculations. From all of the investigated cluster configurations, nanoparticle trimers with D(3h) geometry and heptamers in D(6h) geometry stand out due to their polarization insensitive responses and high electric (E-) field intensity enhancement, making them building blocks of choice in this size range. The near-field intensity maximum of the D(6h) heptamer is red-shifted with regard to the D(3h) trimer by 125 nm, which confirms the possibility of a rational tuning of the near-field response in NCAs through the choice of the constituent nanoparticle clusters. For the nanoparticle trimer we investigate the influence of the cluster geometry on the optical response in detail and map near- and far-field spectra associated with the transition of the cluster configuration from D(3h) into D(∞h).  相似文献   

20.
Time dependent density functional theory has been applied to analyze the effect of substituent groups on one-photon (OPA) and two-photon (TPA) absorption properties of extended amine-terminated phenylenevinylene oligomers. All investigated molecules are characterized by increased TPA activity. Calculated TPA cross-sections for these compounds do not show TPA enhancements observed in experimental measurements. Stabilization of the TPA active excited state in these chromophores leads to the small (0.2 eV) energy separation between the OPA and TPA allowed excited states, which agrees well with experimental data and may lead to the enhancement of the TPA response due to the strong vibronic couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号