首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of [(eta(5)-Me4EtC5)Fe(II)Cl(tmeda)] (tmeda = N,N,N'N'-tetramethylethylenediamine) with a polyanion solution of decacyclene (1) results in the formation of the triple-deckers [{(eta(5)-Me4EtC5)Fe}2-mu2-(eta(6):eta(6)-decacyclene)] (3) and [{(eta(5)-Me4EtC5)Fe}4-mu4-(eta(6):eta(6):eta(6):eta(6)-decacyclene)] (4). Metal complexation in 3 and 4 occurs on opposite faces of the pi perimeter in an alternating mode. The decacyclene ring adopts a gently twisted molecular propeller geometry with twofold crystallographic symmetry (C2). Complex 4 crystallizes in the chiral space group C222(1); the investigated crystal only contains decacyclene rings with M chirality. The handedness can be assigned unambiguously to the presence of the iron atoms. Cyclovoltammetric studies revealed quasireversible behavior of the redox events and a strong interaction of the Fe atoms in 3 and 4, exemplified by potential differences deltaE of 660 and 770(780) mV between the first and the second individual oxidation processes. This corresponds to a high degree of metal-metal interaction for 3 and 4. The successful syntheses of 3 and 4 together with earlier results from our laboratory proves that all five- and six-membered pi subunit sets of 1 are prone to metal complexation. A clear site preference in 1 towards the complexation of [Cp(R)]iron, -cobalt, and -nickel fragments exists.  相似文献   

2.
New complexes of Cu(II), Co(II), and Ni(II) with 1-phenyl-3-methyl-4-[(4-phenylazophenyl)hydrazono]-5H-pyrazol-5-one and 1-phenyl-3-methyl-4-[4-methyl-2-(4-methylphenylazophenyl)hydrazono]-5H-pyrazol-5-one are synthesized by the chemical and electrochemical methods and characterized by IR, 1H NMR, and EXAFS spectroscopy and X-ray diffraction analysis. Depending on the complexing metal and position of the additional azo group, the latter is involved or not in coordination with the metal to form heterounit five- and six-membered metallocycles.  相似文献   

3.
Treatment of the metallo ligands [ML(pz)(2)(Hpz)] (pz = pyrazolate; L = C(5)Me(5), M = Ir (1); L = mesitylene, M = Ru (3)) with [M'Cl{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (4), Ni (5)) yields heterodinuclear complexes of formula [LM(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (L = C(5)Me(5); M = Ir; M' = Co (6), Ni (7). L = mesitylene; M = Ru; M' = Co (8)). The related complex [Ru(eta(6)-p-cymene)(pz)(2)(Hpz)] (2) reacts with equimolar amounts of 4 or 5 to give mixtures of the corresponding bis(&mgr;-pyrazolato) &mgr;-chloro complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (9), Ni (10)) and the triply pyrazolato-bridged complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(3)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (11), Ni (12)). Complex 1 reacts with 5 in the presence of KOH to give the IrNi complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(3)Ni{HB(3-i-Pr-4-Br-pz)(3)}] (13) whereas its reaction with 4 and KOH rendered the bis(&mgr;-pyrazolato) &mgr;-hydroxo complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(2)(&mgr;-OH)Co{HB(3-i-Pr-4-Br-pz)(3)}] (14). The molecular structure of the heterobridged IrCo complex (6) and those of the homobridged RuNi (12) and IrNi (13) complexes have been determined by X-ray analyses. Compound 6 crystallizes in the monoclinic space group P2(1)/n, with a = 10.146(5) ?, b = 18.435(4) ?, c = 22.187(13) ?, beta = 97.28(4) degrees, and Z = 4. Complex 12 is monoclinic, space group P2(1), with a = 10.1169(7) ?, b = 21.692(2) ?, c = 11.419(1) ?, beta = 112.179(7) degrees, and Z = 2. Compound 13 crystallizes in the monoclinic space group Cc, with a = 13.695(2) ?, b = 27.929(6) ?, c = 13.329(2) ?, beta = 94.11(4) degrees, and Z = 4. All the neutral complexes 6, 12, and 13 consist of linear M.M'.B backbones with two (6) or three (12, 13) pyrazolate ligands bridging the dimetallic M.M' units and three substituted 3-i-Pr-4-Br-pz groups joining M' to the boron atoms. The presence in the proximity of the first-row metal M' of the three space-demanding isopropyl substituents of the pyrazolate groups induces a significant trigonal distortion of the octahedral symmetry, yielding clearly different M'-N bond distances on both sides of the ideal octahedral coordination sphere of these metals.  相似文献   

4.
The donor strengths of the following triarylphosphine ligands P(Ar)(2)(Ar')(Ar = Ar'= 4-Me(3)SiC(6)H(4), 1b; 4-Me(3)CC(6)H(4), 1d; 4-F(3)CC(6)H(4), 1e; Ar = C(6)H(5), Ar'= 4-Me(3)SiC(6)H(4), 1c) have been evaluated experimentally and theoretically. The measurements of the J(P-Se) coupling constants of the corresponding synthesised selenides Se=P(Ar)(2)(Ar'), 2b,c and the DFT calculation of the energies of the phosphine lone-pair (HOMO) reveal insignificant influence on the electronic properties of the substituted phosphines when the trimethylsilyl group is attached to the aryl ring, in marked contrast to the strong electronic effect of the trifluoromethyl group. These triarylphosphine ligands P(Ar)(2)(Ar') reacted with (eta5-C(5)H(5))Co(CO)(2), (eta5-C(5)H(5))Co(CO)I(2) or PdCl(2) to yield the new compounds (eta5-C(5)H(5))Co(CO)[P(Ar)(2)(Ar')], 3b,d; (eta5-C(5)H(5))CoI(2)[P(Ar)(2)(Ar')], 4b-e; and PdCl(2)[P(Ar)(2)(Ar')](2), 5b,c respectively. These complexes have been characterized and their spectroscopic properties compared with those reported for the known triphenylphosphine complexes. Again, the contrast of the (31)P NMR and (13)C NMR chemical shifts or C-O or M-Cl stretching frequencies, when applied, does not show an important electronic effect on the metal complex of the trimethylsilyl substituted phosphines with respect to P(C(6)H(5))(3) derivatives. Solubility measurements of complexes 3a and 3b in scCO(2) were performed. We conclude that Me(3)Si groups on the triarylphosphine improve the solubility of the corresponding metal complex in scCO(2).  相似文献   

5.
The rates of hydrogenation of the N2 ligand in the side-on bound dinitrogen compounds, [(eta(5)-C5Me4H)2Zr]2(mu2,eta(2),eta(2)-N2) and [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford the corresponding hydrido zirconocene diazenido complexes have been measured by electronic spectroscopy. Determination of the rate law for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) establishes an overall second-order reaction, first order with respect to each reagent. These data, in combination with a normal, primary kinetic isotope effect of 2.2(1) for H2 versus D2 addition, establish the first H2 addition as the rate-determining step in N2 hydrogenation. Kinetic isotope effects of similar direction and magnitude have also been measured for hydrogenation (deuteration) of the two other zirconocene dinitrogen complexes. Measuring the rate constants for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) over a 40 degrees C temperature range provided activation parameters of deltaH(double dagger) = 8.4(8) kcal/mol and deltaS(double dagger) = -33(4) eu. The entropy of activation is consistent with an ordered four-centered transition structure, where H2 undergoes formal 1,2-addition to a zirconium-nitrogen bond with considerable multiple bond character. Support for this hypothesis stems from the observation of N2 functionalization by C-H activation of a cyclopentadienyl methyl substituent in the mixed ring dinitrogen complexes, [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford cyclometalated zirconocene diazenido derivatives.  相似文献   

6.
Organometallic ruthenium(II) arene anticancer complexes of the type [(eta(6)-arene)Ru(II)(en)Cl][PF(6)] (en = ethylenediamine) specifically target guanine bases of DNA oligomers and form monofunctional adducts (Morris, R., et al. J. Med. Chem. 2001). We have determined the structures of monofunctional adducts of the "piano-stool" complexes [(eta(6)-Bip)Ru(II)(en)Cl][PF(6)] (1, Bip = biphenyl), [(eta(6)-THA)Ru(II)(en)Cl][PF(6)] (2, THA = 5,8,9,10-tetrahydroanthracene), and [(eta(6)-DHA)Ru(II)(en)Cl][PF(6)] (3, DHA = 9,10-dihydroanthracene) with guanine derivatives, in the solid state by X-ray crystallography, and in solution using 2D [(1)H,(1)H] NOESY and [(1)H,(15)N] HSQC NMR methods. Strong pi-pi arene-nucleobase stacking is present in the crystal structures of [(eta(6)-C(14)H(14))Ru(en)(9EtG-N7)][PF(6)](2).(MeOH) (6) and [(eta(6)-C(14)H(12))Ru(en)(9EtG-N7)][PF(6)](2).2(MeOH) (7) (9EtG = 9-ethylguanine). The anthracene outer ring (C) stacks over the purine base at distances of 3.45 A for 6 and 3.31 A for 7, with dihedral angles of 3.3 degrees and 3.1 degrees, respectively. In the crystal structure of [(eta(6)-biphenyl)Ru(en)(9EtG-N7)][PF(6)](2).(MeOH) (4), there is intermolecular stacking between the pendant phenyl ring and the purine six-membered ring at a distance of 4.0 A (dihedral angle 4.5 degrees). This stacking stabilizes a cyclic tetramer structure in the unit cell. The guanosine (Guo) adduct [(eta(6)-biphenyl)Ru(en)(Guo-N7)][PF(6)](2).3.75(H(2)O) (5) exhibits intramolecular stacking of the pendant phenyl ring with the purine five-membered ring (3.8 A, 23.8 degrees) and intermolecular stacking of the purine six-membered ring with an adjacent pendant phenyl ring (4.2 A, 23.0 degrees). These occur alternately giving a columnar-type structure. A syn orientation of arene and purine is present in the crystal structures 5, 6, and 7, while the orientation is anti for 4. However, in solution, a syn orientation predominates for all the biphenyl adducts 4, 5, and the guanosine 5'-monophosphate (5'-GMP) adduct 8 [(eta(6)-biphenyl)Ru(II)(en)(5'-GMP-N7)], as revealed by NMR NOE studies. The predominance of the syn orientation both in the solid state and in solution can be attributed to hydrophobic interactions between the arene and purine rings. There are significant reorientations and conformational changes of the arene ligands in [(eta(6)-arene)Ru(II)(en)(G-N7)] complexes in the solid state, with respect to those of the parent chloro-complexes [(eta(6)-arene)Ru(II)(en)Cl](+). The arene ligands have flexibility through rotation around the arene-Ru pi-bonds, propeller twisting for Bip, and hinge-bending for THA and DHA. Thus propeller twisting of Bip decreases by ca. 10 degrees so as to maximize intra- or intermolecular stacking with the purine ring, and stacking of THA and DHA with the purine is optimized when their tricyclic ring systems are bent by ca. 30 degrees, which involves increased bending of THA and a flattening of DHA. This flexibility makes simultaneous arene-base stacking and N7-covalent binding compatible. Strong stereospecific intramolecular H-bonding between an en NH proton oriented away from the arene (en NH(d)) and the C6 carbonyl of G (G O6) is present in the crystal structures of 4, 5, 6, and 7 (average N...O distance 2.8 A, N-H...O angle 163 degrees ). NMR studies of the 5'-GMP adduct 8 provided evidence that en NH(d) protons are involved in strong H-bonding with the 5'-phosphate and O6 of 5'-GMP. The strong H-bonding from G O6 to en NH(d) protons partly accounts for the high preference for binding of [(eta(6)-arene)Ru(II)en](2+) to G versus A (adenine). These studies suggest that simultaneous covalent coordination, intercalation, and stereospecific H-bonding can be incorporated into Ru(II) arene complexes to optimize their DNA recognition behavior, and as potential drug design features.  相似文献   

7.
Sodium amalgam reduction of the bis(indenyl)zirconium dihalide complexes, (eta5-C9H5-1-iPr-3-Me)2ZrX2 (X = Cl, Br, I), yielded the corresponding end-on dinitrogen complexes, [(eta5-C9H5-1-iPr-3-Me)2Zr(NaX)]2(mu2, eta1, eta1-N2), with inclusion of 1 equiv of salt per zirconocene. The solid state structures of the chloro and iodo congeners establish short Zr N and elongated N N bonds, consistent with modest to strong activation of the coordinated dinitrogen molecule. Exposure of the N2 compounds to 1 atm of dihydrogen resulted in rapid N H bond formation to yield a hydrido zirconocene hydrazido compound concomitant with salt elimination. These studies establish a new structural type of zirconocene dinitrogen complex and demonstrate that side-on coordination of the N2 ligand in the ground state is not a prerequisite for dinitrogen hydrogenation.  相似文献   

8.
The C-Cl bonds of ortho-chlorinated benzamides Cl-ortho-C(6)H(4)C(=O)NHR (R = Me (1), nBu (2), Ph (3), (4-Me)Ph (4) and (4-Cl)Ph (5)) were successfully activated by tetrakis(trimethylphosphine)nickel(0) and tetrakis(trimethylphosphine)cobalt(0). The four-coordinate nickel(II) chloride complexes trans-[(C(6)H(4)C([double bond, length as m-dash]O)NHR)Ni(PMe(3))(2)Cl] (R = Me (6), nBu (7), Ph (8) and (4-Me)Ph (9)) as C-Cl bond activation products were obtained without coordination of the amide groups. In the case of 2, the ionic penta-coordinate cobalt(II) chloride [(C(6)H(4)C(=O)NHnBu)Co(PMe(3))(3)]Cl (10) with the [C(phenyl), O(amide)]-chelate coordination as the C-Cl bond activation product was isolated. Under similar reaction conditions, for the benzamides 3-5, hexa-coordinate bis-chelate cobalt(III) complexes (C(6)H(4)C(=O)NHR)Co(Cl-ortho-C(6)H(4)C(=O)NR)(PMe(3))(2) (11-13) were obtained via the reaction with [Co(PMe(3))(4)]. Complexes 11-13 have both a five-membered [C,N]-coordinate chelate ring and a four-membered [N,O]-coordinate chelate ring with two trimethyphosphine ligands in the axial positions. Phosphonium salts [Me(3)P(+)-ortho-C(6)H(4)C(=O)NHR]Cl(-) (R = Ph (14) and (4-Me)Ph (15)) were isolated by reaction of complexes 8 and 9 as a starting material under 1 bar of CO at room temperature. The crystal and molecular structures of complexes 6, 7 and 9-12 were determined by single-crystal X-ray diffraction.  相似文献   

9.
Mononuclear Ni(II), Co(II), and Zn(II) complexes of the bppppa (N,N-bis[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine) ligand have been synthesized and characterized by X-ray crystallography, 1H NMR, UV-vis (Ni(II) and Co(II)) and infrared spectroscopy, and elemental analysis. Each complex has the empirical formula [(bppppa)M](ClO4)2 (M = Ni(II), 2; Zn(II), 3; Co(II), 4) and in the solid state exhibits a metal center having a coordination number of five; albeit, the cation of 2 also has a sixth weak interaction involving a perchlorate anion. Treatment of [(bppppa)Ni](ClO4)2 (2) with 1 equiv of acetohydroxamic acid results in the formation of [(bppppa)Ni(HONHC(O)CH3)](ClO4)2 (1), a novel Ni(II) complex having a coordinated neutral acetohydroxamic acid ligand. In 1, one phenyl-appended pyridyl donor of the bppppa chelate ligand is dissociated from the metal center and acts as a hydrogen bond acceptor for the hydroxyl group of the bound acetohydroxamic acid ligand. Treatment of 1 with excess water results in the formation of 2 and free acetohydroxamic acid. We hypothesize that this reaction occurs due to disruption of the intramolecular hydrogen bonding interaction involving the bound acid. In this series of reactions, the bppppa ligand exhibits behavior reminiscent of a type III hemilabile ligand in terms of one phenylpyridyl donor. Treatment of 3 or 4 with acetohydroxamic acid results in no reaction, indicating that the bppppa-ligated Ni(II) derivative 2 exhibits unique coordination chemistry with respect to reaction with acetohydroxamic acid within this series of complexes. We attribute this reactivity to the ability of the bppppa-ligated Ni(II) center to adopt a pseudo-octahedral geometry, whereas the Zn(II) and Co(II) complexes retain five coordinate metal centers.  相似文献   

10.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

11.
Treatment of the cyclo-P3 complexes [(triphos)MP3] [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane; M = Co (1), Rh (2)] with stoichiometric amounts of [M'(CO)5(thf)]n+ (n = 0, M' = Cr, Mo, W; n = 1, M' = Re) and [W(CO)4(PPh3)(thf)] yields the compounds [[(triphos)M](mu,eta 3:1-P3) [M'(CO)5]] [M = Co; M' = Cr (3a), Mo (3b), W (3c). M = Rh; M' = W (4)], [[(triphos)Co](mu,eta 3:1-P3)[Re(CO5)]]BF4.C7H8 (5) and [[(triphos)Rh](mu,eta 3:1-P3)[W(CO)4PPh3]].2CH2Cl2 (6). The X-ray structures of 5 and 6 have been determined. Crystal data: 5, monoclinic space group P2(1)/n, a = 14.754(2) A, b = 24.886(4) A, c = 15.182(2) A, beta = 103.38(1) degrees, Z = 4; 6, monoclinic space group P2(1)/n, a = 14.872(3) A, b = 27.317(6) A, c = 16.992(4) A, beta = 111.75(5) degrees, Z = 4. The effects of eta 1 coordination on the MP3 core are discussed by comparing the MP3 skeletons in the above structures with those of the previously characterized bis and tris end-on adducts of organometallic fragments of 1. Variable temperature NMR data for the compounds provide evidence for fluxional processes in solution that may be interpreted as [(triphos)M] rotation about its C3 axis and [M'(CO)5] or [M'(CO)4PPh3] scrambling over the P3 cycle. The activation parameters of the fragment scrambling process are determined.  相似文献   

12.
The generation of polynuclear complexes with one, two, or four acetylenedithiolate bridging units via the isolation of eta2-alkyne complexes of acetylenedithiolate K[Tp'M(CO)(L)(C2S2)] (Tp'=hydrotris(3,5-dimethylpyrazolyl)borate, M=W, L=CO (K-3a), M=Mo, L=CNC6H3Me2 (K-3b)) is reported. The strong electronic cooperation of Ru and W in the heterobimetallic complexes [(eta5-C5H5)(PPh3)Ru(3a)] (4a) and [(eta5-C5H5)(Me2C6H3NC)Ru(3a)] (4b) has been elucidated by correlation of the NMR, IR, UV-vis, and EPR-spectroscopic properties of the redox couples 4a/4a+ and 4b/4b+ with results from density functional calculations. Treatment of M(II) (M=Ni, Pd, Pt) with K-3a and K-3b afforded the homoleptic bis complexes [M(3a)2] (M=Ni (5a), Pd (5b), Pt (5c)), and [M(3b)2] (M=Pd (6a) and Pt (6b)), in which the metalla-acetylendithiolates exclusively serve as S,S'-chelate ligands. The vibrational and electronic spectra as well as the cyclic voltammetry behavior of all the complexes are compared. The structural analogy of 5a/5b/5c and 6a/6b with dithiolene complexes is only partly reflected in the electronic structures. The very intense visible absorptions involve essential d orbital contributions of the central metal, while the redox activity is primarily attributed to the alkyne complex moiety. Accordingly, stoichiometric reduction of 5a/5b/5c yields paramagnetic complex anions with electron-rich alkyne complex moieties being indistinguishable in the IR time scale. K-3a forms with Cu(I) the octanuclear cluster [Cu(3a)]4 (7) exhibiting a Cu4(S2C2)4W4 core. The nonchelating bridging mode of the metalla-acetylenedithiolate 3a- in 7 is recognized by a high-field shift of the alkyne carbon atoms in the 13C NMR spectrum. X-ray diffraction studies of K[Tp'(CO)(Me3CNC)Mo(eta2-C2S2)] (K-3c), 4b, 6a, 6b, and 7 are included. Comparison of the molecular structures of K-3c and 7 on the one hand with 4b and 6a/6b on the other reveals that the small bend-back angles in the latter are a direct consequence of the chelate ring formation.  相似文献   

13.
By reaction of the geometrically incomplete cubane-like clusters [(eta(5)-Cp')(3)Mo(3)S(4))][pts] and [(eta(5)-Cp')(3)W(3)S(4)][pts] (Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) with group 10 alkene complexes, three new heterobimetallic clusters with cubane-like cluster cores were isolated: [(eta(5)-Cp')(3)W(3)S(4)M'(PPh(3))][pts] ([5][pts], M' = Pd; [6][pts], M' = Pt); [(eta(5)-Cp')(3)Mo(3)S(4)Ni(AsPh(3))][pts] ([7][pts]). The compounds [5][pts]-[7][pts] are completing the extensive series of clusters [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] (M = Mo, W; M' = Ni, Pd, Pt; E = P, As) which allows the consequences of replacing a single type of atom on structural and NMR and UV/vis spectroscopic as well as electrochemical properties to be determined. Single-crystal X-ray structure determinations of [5][pts]-[7][pts] revealed that [5][pts] was not isomorphous to the other members of the series [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] due to distinctly different cell parameters, which in the molecular structure of [5](+) is reflected in a slightly different orientation of the PPh(3) ligand. Electrochemical measurements on the series showed that the Mo-based clusters were more difficult to oxidize than their W-based analogues. The Pd-containing clusters underwent two-electron oxidation processes, whereas the Ni- and Pt-containing clusters underwent two separated one-electron oxidation processes.  相似文献   

14.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

15.
The half-sandwich compounds [(eta(5)-C(5)Me(5))BeX] (X=Cl, 1 a; Br, 1 b), readily prepared from the reaction of the halides BeX(2) and M[C(5)Me(5)] (M=Na or K), are useful synthons for other (eta(5)-C(5)Me(5))Be organometallic compounds, including the alkyl derivatives [(eta(5)-C(5)Me(5))BeR] (R=Me, 2 a; CMe(3), 2 b; CH(2)CMe(3), 2 c; CH(2)Ph, 2 d). The latter compounds can be obtained by metathetical exchange of the halides 1 with the corresponding lithium reagent and exhibit NMR signals and other properties in accord with the proposed formulation. Attempts to make [(eta(5)-C(5)Me(5))BeH] have proved fruitless, probably due to instability of the hydride toward disproportionation into [Be(C(5)Me(5))(2)] and BeH(2). The half-sandwich iminoacyl [(eta(5)-C(5)Me(5))Be(C(NXyl)Cp')] and [(eta(5)-C(5)Me(4)H)Be(C(NXyl)Cp')]3, 6 where Xyl=C(6)H(3)-2,6-Me(2) and Cp'=C(5)Me(5) or C(5)Me(4)H, are formed when the beryllocenes [Be(C(5)Me(5))(2)], [Be(C(5)Me(4)H)(2)], and [Be(C(5)Me(5))(C(5)Me(4)H)] are allowed to react with CNXyl. Isolation of three different iminoacyl isomers from the reaction of the mixed-ring beryllocene [(eta(5)-C(5)Me(5))Be(eta(1)-C(5)Me(4)H)] and CNXyl, namely compounds 5 a, 5 b, and 6, provides compelling evidence for the existence in solution of different beryllocene isomers, generated in the course of two very facile processes that explain the solution dynamics of these metallocenes, that is the 1,5-sigmatropic shift of the Be(eta(5)-Cp') unit around the periphery of the eta(1)-Cp' ring, and the molecular inversion rearrangement that exchanges the roles of the two rings.  相似文献   

16.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

17.
Reaction between the cluster salts [(eta(5)-Cp')(3)M(3)S(4)][pts] (M = Mo, W; Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) and [Co(2)(CO)(8)] yielded the electroneutral clusters [(eta(5)-Cp')(3)M(3)S(4)Co(CO)]. The molecular structure of [(eta(5)-Cp')(3)W(3)S(4)Co(CO)] was determined by single-crystal X-ray diffraction methods. The unprecedented 60 electron W(3)S(4)Co cluster completes a homologous series of heterobimetallic clusters, [(eta(5)-Cp')(3)M(3)S(4)Co(CO)] (M = Cr, Mo, W), containing a cubane-like core motif.  相似文献   

18.
A general study of the regioselective hydroamination of terminal alkynes in the presence of [(eta5-Cp)2Ti(eta2-Me3SiC2SiMe3)] (1), [(eta5-CpEt)2Ti(eta2-Me3SiC2SiMe3)] (CpEt=ethylcyclopentadienyl) (2), and [(eta5-Cp*)2Ti(eta2-Me3SiC2SiMe3)] (Cp*=pentamethylcyclopentadienyl) (3) is presented. While aliphatic amines give mainly the anti-Markovnikov products, anilines and aryl hydrazines yield the Markovnikov isomer as main products. Interestingly, using aliphatic amines such as n-butylamine and benzylamine the different catalysts lead to a significant change in the observed regioselectivity. Here, for the first time a highly selective switch from the Markovnikov to the anti-Markovnikov product is observed simply by changing the catalyst. Detailed theoretical calculations for the reaction of propyne with different substituted anilines and tert-butylamine in the presence of [(eta5-C5H5)Ti(=NR)(NHR)] (R=4-C6H4X; X=H, F, Cl, CH3, 2,6-dimethylphenyl) reveal that the experimentally observed regioselectivity is determined by the relative stability of the corresponding pi-complexes 10. While electrostatic stabilization favors the Markovnikov performance for aniline, the steric repulsive destabilization disfavors the Markovnikov performance for tert-butylamine.  相似文献   

19.
Evans WJ  Rego DB  Ziller JW 《Inorganic chemistry》2006,45(26):10790-10798
The recently discovered LnZ3/M and LnZ2Z'/M methods of reduction (Ln = lanthanide; M = alkali metal; Z, Z' = monoanionic ligands that allow these combinations to generate "LnZ2" reactivity) have been applied to provide the first crystallographically characterized dinitrogen complexes of cerium, [C5Me5)2(THF)Ce]2(mu-eta2.eta2-N2) and [(C5Me4H)2(THF)Ce]2(mu-eta2.eta2-N2), so that the utility of 15N NMR spectroscopy with paramagnetic lanthanides could be determined. [(C5Me5)2(THF)Pr]2(mu-eta2.eta2-N2) and [(C5Me4H)2(THF)Pr]2(mu-eta2.eta2-N2) were also synthesized, crystallographically characterized, and studied by 15N NMR methods. The data were compared to those of [(C5Me5)2Sm]2(mu-eta2.eta2-N2). [(C5Me5)2(THF)Ce]2(mu-eta2.eta2-N2) and [(C5Me5)2(THF)Pr]2(mu-eta2.eta2-N2) are unlike their (C5Me4H)1- analogs in that the solvating THF molecules are cis rather than trans. Structural information on precursors, (C5Me4H)3Ce, (C5Me4H)3Pr, and the oxidation product [(C5Me5)2Ce]2(mu-O) is also presented.  相似文献   

20.
The effects of facial coordination of benzene to a trinuclear transition-metal cluster have been studied by structure correlation and DFT calculational methods. Data taken from the X-ray crystal structures of twelve complexes [(eta-C(5)H(4)R")Co(3)(micro(3)-eta(2):eta(2):eta(2)-C(6)H(4)RR')] 1 b-1 m were analyzed by using standard statistical methods. The prototypal facial arene ligand is considerably expanded with respect to free benzene and shows a small but highly significant Kekulè distortion (d(CC)=1.42, 1.45 A). DFT MO calculations were carried out on the model complexes [(eta-C(5)H(5))M(3)(micro-eta(2):eta(2):eta(2)-C(6)H(6))] 1 a (M=Co), 2 (M=Rh), and 3 (M=Ir). Ring currents in the facial benzene and apical cyclopentadienyl ligands have been assessed by nucleus independent chemical shift (NICS) calculations. Compared to the free ligand (with the optimized D(6h) structure as well as with D(3h) and a C(3v) geometries similar to that in the prototypal facial arene), facial benzene exhibits somewhat reduced but still substantial cyclic electron delocalization (CED). The calculated order of CED is benzene approximately [(CO)(3)Cr(eta-C(6)H(6))] 4 > 1 > 2 > 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号