首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Soluble and rigid terpyridine-based ditopic ligands bearing one to five phenylene/ethynylene modules have been synthesized by way of a stepwise procedure. Each module is attached to the terpyridine unit via an ethynylene fragment and functionalized at the 4-position with an additional ethynylene connector and in the 2,5-positions with two flexible dodecyloxy chains. The synthetic protocol is based on sequential Pd(0)-catalyzed cross-coupling reactions between a terpyridine subunit grafted with the necessary diethynyl/phenyl or ethynylphenyl/bromide appendage. For ditopic ligands displaying an even number of phenyl/ethynylene modules, the final step involves a single cross-coupling reaction between 4'-ethynylene-2,2':6',6' '-terpyridine and the appropriate bromo derivative. In the case of the ligands having an odd number of phenylene/ethynylene fragments, a double cross-coupling reaction between an extended dibromopolyphenylene intermediate and 4'-ethynylene-2,2':6',6' '-terpyridine or 1-(4'-ethynylene-2,2':6',2' '-terpyridine)-4-ethynylene-2,5-didodecyloxy-benzene is required. For ligands I-V, optimal preparative conditions were found with [Pd(0)(PPh(3))(4)] (6 mol %) in n-propylamine at 70 degrees C. Oxidative dimerization of the 1-(4'-ethynylene-2,2':6',2' '-terpyridine)-4-ethynylene-2,5-didodecyloxybenzene derivative in the presence of cupric salts and oxygen gives the corresponding homoditopic ligand II(2)() bearing a central diphenyldiacetylene spacer. Spectroscopic data for the new oligomers are discussed in terms of the extent of pi-electron conjugation. Upon increasing the number of phenylene/ethynylene modules, there is a progressive lowering in energy of absorption and fluorescence transitions.  相似文献   

2.
The ligand 4(3H)-pyrimidone (Hpm) forms the complexes trans-[PdCl(2)(Hpm)(2)] and [Pd(PP)(Hpm)(2)](CF(3)SO(3))(2) (PP = Ph(2)PCH(2)PPh(2) or Ph(2)P(CH(2))(3)PPh(2)), with the neutral ligand (Hpm), and a bowl-like molecular triangle, [(Pd(bu(2)bipy)(mu-pm))(3)](3+) (bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine), with the deprotonated ligand (pm). This triangular complex acts as a host for binding of several anionic guests.  相似文献   

3.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

4.
Treatment of the osmabenzyne Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)Cl(2)(PPh(3))(2) (1) with 2,2'-bipyridine (bipy) and thallium triflate (TlOTf) produces the thermally stable dicationic osmabenzyne [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) (2). The dicationic osmabenzyne 2 reacts with ROH (R = H, Me) to give osmabenzene complexes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf, in which the metallabenzene ring deviates significantly from planarity. In contrast, reaction of the dicationic complex 2 with NaBH(4) produces a cyclopentadienyl complex, presumably through the osmabenzene intermediate [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf. The higher thermal stability of [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf relative to [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf can be related to the stabilization effect of the OR groups on the metallacycle. A theoretical study shows that conversion of the dicationic osmabenzyne complex [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) to a carbene complex by reductive elimination is thermodynamically unfavorable. The theoretical study also suggests that the nonplanarity of the osmabenzenes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf is mainly due to electronic reasons.  相似文献   

5.
The reactions between cis-[M(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (M=Pt, Pd; R=Ph, tBu, Tol 2, 3) or cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu)] (R=Ph 4, Tol 5) and cis-[Pt(C(6)F(5))(2)(thf)(2)] 1 have been investigated. Whereas [M](PPh(2)CtriplebondCtBu)(2) ([M]=cis-M(C(6)F(5))(2)) is inert towards 1, the analogous reactions starting from [M](PPh(2)CtriplebondCR)(2) or [Pt](PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu) (R=Ph, Tol) afford unusual binuclear species [Pt(C(6)F(5))(S)mu-[C(R')dbondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]M(C(6)F(5))(2)] (R=R'=Ph, Tol, M=Pt 6 a,c, M=Pd 7 a,c; M=Pt, R'=tBu, R=Ph 8, Tol 9) containing a bis(diphenylphosphanyl)butadienyl bridging ligand formed by an unprecedented sequential insertion reaction of two P-coordinated PPh(2)CtriplebondCR ligands into a PtbondC(6)F(5) bond. Although in solution the presence of coordinated solvent S (S=(thf)(x)(H(2)O)(y)) in 6, 7 is suggested by NMR spectroscopy, X-ray diffraction analyses of different crystals of the mixed complex [Pt(C(6)F(5))mu-[C(tBu)doublebondC(PPh(2))C(PPh(2))doublebondC(Tol)(C(6)F(5))]Pt(C(6)F(5))(2)] 9 unequivocally establish that in the solid state the steric crowding of the new diphenylbutadienyl ligand formed stabilizes an unusual coordinatively unsaturated T-shaped 3-coordinated platinum(II) center. Structure determinations of the mononuclear precursors cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (R=Ph, tBu, Tol) have been carried out to evaluate the factors affecting the insertion processes. The reactions of the platinum complexes 6 towards neutral ligands (L=CO, py, PPh(2)H, CNtBu) in a 1:1 molar ratio afford related diplatinum derivatives 10-13, whereas treatment with CNtBu (1:2 molar ratio) or 2,2'-bipy (1:1 molar ratio) results in the opening of the chelating ring to give cis,cis-[Pt(C(6)F(5))(L)(2)mu-[1-kappaC(1):2-kappaPP'-C(R)doublebondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]Pt(C(6)F(5))(2)] (14, 15). The unsaturated or solvento complexes are unstable in solution evolving firstly, through an unexpected formal 4-1 R (Ph, Tol) migration, to the intermediate diphosphanylbutadienyl isomer derivatives [Pt(C(6)F(5))(S)mu-[C(C(6)F(5))doublebondC(PPh(2))C(PPh(2))doublebondC(R)(2)]M(C(6)F(5))(2)] (16, 18) (X-ray, R=Ph, M=Pt) and, finally, to 1-pentafluorophenyl-2,3-bis(diphenylphosphanyl)naphthalene mononuclear complexes (17, 19) by annulation of a phenyl or tolyl group.  相似文献   

6.
The transmetallation of the palladacyclopentadiene complex Pd{C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy) with the dicationic Pd(II) complex [Pd(bipy)(CH(3)CN)(2)][BF(4)](2) afforded a terminally σ-palladated diene complex [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy)(2)(CH(3)CN)(2)][BF(4)](2). It was revealed by X-ray crystallographic analysis that replacement of the acetonitrile ligands in a terminally σ-palladated diene complex with PPh(3) ligands resulted in the conformation change of the σ-palladated diene moiety from skewed s-cis to planar s-trans. Treatment of a bis-triphenylphosphine dipalladium complex [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2) with dimethoxyacetylene dicarboxylate (DMAD) (1 equiv.) in acetonitrile resulted in the insertion of DMAD to the Pd-Pd bond to afford [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)}(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2). Addition of the second DMAD gave the ylide-type complex [Pd(2){μ-η(2):η(3)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)(PPh(3))}(PPh(3))(2)(CH(3)CN)(3)][PF(6)](2) of which the structure was determined by X-ray crystallographic analysis.  相似文献   

7.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

8.
New conditions have been found for the desulfitative Mizoroki-Heck arylation and trifluoromethylation of mono- and disubustituted olefins with arenesulfonyl and trifluoromethanesulfonyl chlorides. Thus (E)-1,2-disubstituted alkenes with high stereoselectivity and 1,1,2-disubstituted alkenes with 12:1 to 21:1 E/Z steroselectivity can be obtained. Herrmann's palladacycle at 0.1 mol % is sufficient to catalyze these reactions, for which electron-rich or electron-poor sulfonyl chlorides and alkenes are suitable. If phosphine- and base-free conditions are required, 1 mol % [RhCl(C(2)H(4))(2)] catalyzes the desulfitative cross-coupling reactions. Contrary to results reported for [RuCl(2)(PPh(3))(2)]-catalyzed coupling reactions with sulfonyl chlorides, the palladium and rhodium desulfitative Mizoroki-Heck coupling reactions are not inhibited by radical scavenging agents. Possible sulfones arising from the sulfonylation of alkenes at 60 degrees C are not desulfitated at higher temperatures in the presence of the Pd or Rh catalysts.  相似文献   

9.
A novel synthetic route to prepare palladium(II) precursor analogous of classical [Pd(Cl)(2)(solvent)(2)] has been developed. Just stirring Pd(3)(AcO)(6) in dimethyl sulfide at room temperature, in the stoichiometric presence of protic imidate ligands, resulted in the precipitation of the desired complexes [Pd(imidate)(2)(SMe(2))(2)] (imidate = succinimidate (succ) 1, phthalimidate (phthal) 2, maleimidate (mal) 3, saccharinate (sac) 4 or glutarimidate (glut) 5). The new complexes are very soluble in common solvents and have been fully characterized, including an X-ray diffraction analysis of 2. Analogous reactions with succinimide in acetonitrile or dimethylsulfoxide produced [Pd(succinimidate)(2)(solvent)(2)] (6 and 7, respectively) as off-white powders. Thermal decomposition of 6 produces a new species 6* with bridging imidate ligands that can be formulated as a trimer similar to Pd(3)(AcO)(6). The usefulness of 1-5 as precursors has been tested by reactions against monodentated neutral donor ligands, PPh(3) (a compounds), or pyridine (py, b compounds), to produce ten new derivatives of the general formula trans-[Pd(imidate)(2)(L)(2)]. The single-crystal structures of compounds 2a, 3a, 4a, 4a', 5a and 4b have also been established, allowing an interesting molecular and supramolecular structural discussion. A cis-conformation was induced when the bidentate chelate ligand 1,2-bis(diphenylphosphino)benzene (dppb, c compounds) was made to react with 1-5. Structural characterization by X-ray diffraction of complex 2c confirmed the proposed formula. Catalytic activity in Suzuki-Miyaura cross-coupling of aryl bromides and benzyl bromides with aryl boronic acids has been tested.  相似文献   

10.
The tetrahydrofuran adducts [(thf)(4)M(PPh(2))(2)] (M = Ca, Sr) are air sensitive and can easily be oxidized by chalcogens. Metalation of diphenylphosphane oxide, diphenylphosphinic acid, and diphenyldithiophosphinic acid as well as salt metathetical approaches of the potassium salts with MI(2) allow the synthesis of [(thf)(4)Ca(OPPh(2))(2)] (1), [(dmso)(2)Ca(O(2)PPh(2))(2)] (2), [(thf)(3)Ca(O(2)PPh(2))I](2) (3), [(thf)(3)Ca(S(2)PPh(2))(2)] (4), [(thf)(2)Ca(Se(2)PPh(2))(2)] (5), [(thf)(3)Sr(S(2)PPh(2))(2)] (6), [(thf)(3)Sr(Se(2)PPh(2))(2)] (7), and [(thf)(2)Ca(O(2)PPh(2))(S(2)PPh(2))](2) (8), respectively. The diphenylphosphinite anion in 1 contains a phosphorus atom in a trigonal pyramidal environment and binds terminally via the oxygen atom to calcium. The diphenylphosphinate anions act as bridging ligands leading to polymeric structures of calcium bis(diphenylphosphinates). Therefore strong Lewis bases such as dimethylsulfoxide (dmso) are required to recrystallize this complex yielding chain-like 2. The chain structure can also be cut into smaller units by ligands which avoid bridging positions such as iodide and diphenyldithiophosphinate (3 and 8, respectively). In general, diphenyldithio- and -diselenophosphinate anions act as terminal ligands and allow the isolation of mononuclear complexes 4 to 7. In these molecules the alkaline earth metals show coordination numbers of six (5) and seven (4, 6, and 7).  相似文献   

11.
New homonuclear dimeric Pd(ii) complexes have been synthesized by the reaction of Pd(en)(2+) or Pd(bipy)(2+) (where en = ethylenediamine and bipy = 2,2'-bipyridine) units with acetamide or by the Pd(ii) mediated hydrolysis of CH(3)CN. In these dimers the two metal centers are bridged by either two amidates or by the combination of one hydroxo group and one amidate ligand. The crystal structures of complexes {[Pd(bipy)](2)(micro-1,3-CH(3)CONH)(2)}(NO(3))(2).H(2)O.1/2(CH(3))(2)CO.1/2CH(3)CN () and {[Pd(bipy)](2)(micro-1,3-CH(3)CONH)(2)}(OTf)(2) () showed intrametallic Pd-Pd distances of 2.8480(8) A () and 2.8384(7) A (), respectively, in accordance with the accepted values for a strong Pd-Pd interaction. The presence of pi[dot dot dot]pi interactions between the bipyridine ligands on the di-micro-amidate complexes of Pd(bipy)(2+) shortens the distance between the two Pd centers and allows the formation of the metal-metal interaction. By contrast, the crystal structure of complex {[Pd(en)](2)(micro-1,3-CH(3)CONH)(2)}(OTf)(2).H(2)O (), (where OTf = triflate) where there is no pi[dot dot dot]pi interaction between the ligands on the metal centers, is also reported, and no Pd-Pd interaction is observed. Additionally, one of the complexes, {[Pd(en)](2)(micro-OH)(micro-CH(3)CONH)}(NO(3))(2) (), presents an interesting hydrogen bonded 3-D network formed by nitrate ions and water molecules. All complexes have been characterized by infrared and (1)H NMR spectroscopy.  相似文献   

12.
Han SY  Jeong IH 《Organic letters》2010,12(23):5518-5521
2,2-Difluoro-1-tributylstannylethenyl p-toluenesulfonate (2) was reacted with aryl iodides in the presence of 10 mol % of Pd(PPh(3))(4) and 10 mol % of CuI in DMF at 80 °C for 10-20 h to give the cross-coupled products 3 in 35-97% yields. Further coupling reaction of 3 with arylstannanes in the presence of 5 mol % of Pd(PPh(3))(4) and 3 equiv of LiBr in DMF at 100 °C for 2-24 h afforded the desired products 5 in 25-78% yields.  相似文献   

13.
Addition of 2,2'-bipyridine (bipy) to [Ni(NO)(bipy)][PF(6)] (1) results in formation of a rare five-coordinate nickel nitrosyl [Ni(NO)(bipy)(2)][PF(6)] (2). This complex exhibits a bent NO(-) ligand in the solid state. On standing in acetonitrile, 2 furnishes the NO coupled product, [Ni(κ(2)-O(2)N(2))(bipy)] (8) in moderate yield. Subsequent addition of 2 equiv of acetylacetone (H(acac)) to 8 results in formation of [Ni(acac)(2)(bipy)], N(2)O, and H(2)O. Preliminary mechanistic studies suggest that the N-N bond is formed via a bimetallic coupling reaction of two NO(-) ligands.  相似文献   

14.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

15.
[Pd(PPh(3))(4)] catalyzes the dehydrostannylation of n-alkyltin trichlorides into HSnCl(3)(THF)(n) and isomers of the corresponding alkene. The reaction mechanism involves oxidative addition of the Sn-C bond followed by β-H elimination from the resulting n-alkylpalladium trichlorostannyl species. Rate-determining reductive elimination of HSnCl(3) from cis-[PdH(SnCl(3))(PPh(3))(2)] completes the catalytic cycle. Organotin trichlorides without β-H atoms either do not react or undergo thermal disproportionation. These results are relevant to understand some of the problems associated with the use of monoalkyltin compounds as coupling partner in Stille-type cross-coupling reactions as well as with the catalytic hydrostannylation of 1-alkenes to monoalkyltin trichlorides.  相似文献   

16.
A series of nickel(II) and palladium(II) aryl complexes substituted in the ortho position of the aromatic ring by a (pinacolato)boronic ester group, [MBr[o-C(6)H(4)B(pin)]L(2)] (M = Ni, L(2) = 2PPh(3) (2a), 2PCy(3) (2b), 2PEt(3) (2c), dcpe (2d), dppe (2e), and dppb (2f); M = Pd, L(2) = 2PPh(3) (3a), 2PCy(3) (3b), and dcpe (3d)), has been prepared. Many of these complexes react readily with KO(t)Bu to form the corresponding benzyne complexes [M(eta(2)-C(6)H(4))L(2)] (M = Ni, L(2) = 2PPh(3) (4a), 2PCy(3) (4b), 2PEt(3) (4c), dcpe (4d); M = Pd, L(2) = 2PCy(3) (5b)). This reaction can be regarded as an intramolecular version of a Suzuki cross-coupling reaction, the driving force for which may be the steric interaction between the boronic ester group and the phosphine ligands present in the precursors 2 and 3. Complex 3d also reacts with KO(t)Bu, but in this case disproportionation of the initially formed eta(2)-C(6)H(4) complex (5d) leads to a 1:1 mixture of a novel dinuclear palladium(I) complex, [(dcpe)Pd(mu(2)-C(6)H(4))Pd(dcpe)] (6), and a 2,2'-biphenyldiyl complex, [Pd(2,2'-C(6)H(4)C(6)H(4))(dcpe)] (7d). Complexes 2a, 3b, 3d, 4b, 5b, 6, and 7d have been structurally characterized by X-ray diffraction; complex 5b is the first example of an isolated benzyne-palladium(0) species.  相似文献   

17.
A practical Pd(PPh(3))(4)/DBU catalytic system for the synthesis of pharmaceutically relevant aminopyridine nitrile intermediates, as well as a variety of other aryl nitriles using non-toxic K(4)[Fe(CN)(6)] has been developed. The key features of our new protocol for cyanation lie in that the reaction can be carried out with readily available Pd(PPh(3))(4) under mild and green conditions, even without the assistance of other ligands.  相似文献   

18.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

19.
An efficient preparation of linear and curved bis- and branched tris-5-(2,2'-bipyridines) of nanoscopic dimensions possessing rigid conjugated bridges is presented. The synthesis, which avoids the need of protection/deprotection methodology, utilizes central bridge precursors which are outwardly di- and trifunctionalized with a 5-(2-chloropyridine) synthon via a chemoselective palladium-catalyzed Sonogashira or Negishi cross-coupling protocol to yield the bridged linear (5a-c, 5f,g) and curved (6, 7) bis- and branched (8) tris-5-(2-chloropyridines). Under more forcing conditions, the ethyne-bridged 5-(2-chloropyridines) undergo the Stille cross-coupling reacton with 2-trimethylstannylpyridines to afford the conjugatively bridged linear (1a,b, 1g-j) and curved (2a, b, 3a,b) bis- and branched, (4a,b) tris-5-(2,2'-bipyridines) in good overall yields. The phenyl- and biphenyl-bridged linear bis-5-(2, 2'-bipyridines) (1c-f) were best prepared from the bis-5-(2-bromopyridines) (5d,e) to ensure completion of the Stille cross-coupling reactions. The Stille cross-couplings showed a marked substituent effect in which the terminally phenylated bis- and tris-5-(2,2'-bipyridines) were formed in higher yields than the methyl-substituted analogues with the same bridge. The advantages of the methodology lie in its synthetic convenience and adaptibility for creating multitopic metal ion-binding scaffolds with a potentially very large variety of bridging units and substituents on the terminal pyridine rings. The bridged 5-(2-chloropyridines) may also serve as precursors for the fabrication of metal ion-coordinated conjugated polymers.  相似文献   

20.
Adams CJ  Pope SJ 《Inorganic chemistry》2004,43(11):3492-3499
The reaction of Ru(Me(2)bipy)(PPh(3))(2)Cl(2) 1 with terminal alkynes HCCR in the presence of TlPF(6) leads to the formation of the vinylidene compounds [Ru(Me(2)bipy)(PPh(3))(2)Cl(=C=CHR)][PF(6)] (2) (2a, R = Bu(t); 2b, R = p-C(6)H(4)-Me; 2c, R = Ph). These compounds decompose in oxygenated solution to form the carbonyl compound [Ru(Me(2)bipy)(PPh(3))(2)Cl(CO)][PF(6)] (3), and may be deprotonated by K(2)CO(3) to give the ruthenium(II) terminal acetylide compounds Ru(Me(2)bipy)(PPh(3))(2)Cl(CC-R) (4) (4a, R = Bu(t); 4b, R = p-C(6)H(4)-Me; 4c, R = Ph). Cyclic voltammetry shows that 2a-c may also be reductively dehydrogenated to form 4a-c. 4a-c are readily oxidized to their ruthenium(III) analogues [4a](+)-[4c](+), and the changes seen in their UV/visible spectra upon performing this oxidation are analyzed. These show that whereas the UV/visible spectra of 4a-c show MLCT bands from the ruthenium atom to the bipyridyl ligand, those of [4a](+)-[4c](+) contain LMCT bands originating on the acetylide ligands. This is in agreement with the IR and ESR spectra of [4a](+)-[4c](+). The X-ray crystal structures of the redox pair 4a and [4a][PF(6)()] have been determined, allowing the bonding within the metal-acetylide unit to be analyzed, and an attempt is made to determine Lever electrochemical parameters (E(L)) for the vinylidene and acetylide ligands seen herein. Room temperature luminescence measurements on 4a-c show that the compounds are not strongly emissive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号