首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
第5/6副族高价过渡金属氯化物的有机反应   总被引:2,自引:0,他引:2  
郭巧霞  申宝剑 《有机化学》2005,25(9):1147-1155
从制备化学的角度, 对包括作者本人的研究工作在内的由第5/6副族高价过渡金属氯化物参加的有机反应进行了综述. 内容包括以下几个方面: (1)烷烃、烯烃和炔烃与第5/6副族高价过渡金属氯化物的卤化反应; (2)作为Lewis 酸催化的反应; (3)烯烃歧化反应及炔烃的聚合反应; (4) MoCl5参与的芳烃氧化偶合反应; (5)硫醚化及扩环反应.  相似文献   

2.
Copper chloride anion clusters with both copper oxidation states can be made by laser desorption of CuCl(2) crystals. We have used this method to study the dissociation characteristics of such cluster ions. The stability and the structure of the observed complexes were probed by ab initio calculations. These calculations show that many of these complexes are bridged structures. Thus, for the Cu(2)Cl(4) dimer anion, formally [ClCu-Cl-CuCl(2)](-) , with putative mixed copper oxidation states, the two copper ions become equivalent through bridging. Such bridging does not occur when redox inactive metal ions are present as in [ClCu-Cl-CaCl(2)](-) . By observing the dissociation characteristics of a variety of metal chloride cluster anions produced from binary mixtures, the following Cl(-) affinity order is obtained: FeCl(3) > CuCl > CaCl(2) > FeCl(2) > AgCl ≈ CuCl(2) ≈ ZnCl(2) > LiCl. Ab initio calculations on the Cl(-) affinity of selected chlorides confirm this order as do Cl(-) affinity estimates from the experimentally known vertical electron detachment energies of the superhalogens CaCl(3)(-) and LiCl(2)(-) . An equimolar mixture of CuCl(2) and FeCl(3) produces an intense cluster ion, which, from (65)Cu labeling experiments, is best described as FeCl(4)(-)···Cu(+)···(-)Cl(4) Fe, a Cu(+) bound superhalogen FeCl(4)(-) dimer. The Cu(+) ion can be replaced by the redox inactive alkali cations and by Ag(+) but these metal ion bound FeCl(4)(-) dimers show an entirely different fragmentation behavior which is attributed to the absence of bridging. Electrospray ionization (ESI) of CuCl(2) produces an extended series of (CuCl(2))(n) Cl(-) anions (n = 1-11) and so in ESI very limited reduction of Cu(2+) takes place. The (CuCl(2))(n) Cl(-) anions show an abundant dissociation via loss of neutral Cu(2)Cl(4) which according to our ab initio calculations is 9 kcal/mol more stable than two CuCl(2).  相似文献   

3.
Treatment of trans-(Et 2O) 2MoCl 4 with 2 or 3 equiv of Na(silox) (i.e., NaOSi (t) Bu 3) afforded (silox) 3MoCl 2 ( 1-Mo) or (silox) 3MoCl ( 2-Mo). Purification of 2-Mo was accomplished via addition of PMe 3 to precipitate (silox) 3ClMoPMe 3 ( 2-MoPMe 3), followed by thermolysis to remove phosphine. Use of MoCl 3(THF) 3 with various amounts of Na(silox) produced (silox) 2ClMoMoCl(silox) 2 ( 3-Mo). Alkylation of 2-Mo with MeMgBr or EtMgBr afforded (silox) 3MoR (R = Me, 2-MoMe; Et, 2-MoEt). 2-MoEt was also synthesized from C 2H 4 and (silox) 3MoH, which was prepared from 2-Mo and NaBEt 3H. Thermolysis of WCl 6 with HOSi ( t )Bu 3 afforded (silox) 2WCl 4 ( 4-W), and sequential treatment of 4-W with Na/Hg and Na(silox) provided (silox) 3WCl 2 ( 1-W, tbp, X-ray), which was alternatively prepared from trans-(Et 2S) 2WCl 4 and 3 equiv of Tl(silox). Na/Hg reduction of 1-W generated (silox) 3WCl ( 2-W). Alkylation of 2-W with MeMgBr produced (silox) 3WMe ( 2-WMe), which dehydrogenated to (silox) 3WCH ( 6-W) with Delta H (double dagger) = 14.9(9) kcal/mol and Delta S (double dagger) = -26(2) eu. Magnetism and structural studies revealed that 2-Mo and 2-MoEt have triplet ground states (GS) and distorted trigonal monopyramid (tmp) and tmp structures, respectively. In contrast, 2-W and 2-WMe possess squashed-T d (distorted square planar) structures, and the former has a singlet GS. Quantum mechanics/molecular mechanics studies of the S = 0 and S = 1 states for full models of 2-Mo, 2-MoEt, 2-W, and 2-WMe corroborate the experimental findings and are consistent with the greater nd z (2) /( n + 1)s mixing in the third-row transition-metal species being the dominant feature in determining the structural disparity between molybdenum and tungsten.  相似文献   

4.
5.
Reactions of coordinated functional groups were carried out as follows: The product formed by reaction of A-1a
  • 1 The four new complexes are shown as A-3a, A-3b, B-3a, and B-3b (cf. Fig. 1), and other related complexes are shown as A-1a, A-1b, A-2a, A-2b, B-n, B-1, B-4, and B-5 (cf. Fig. 2)
  • or A-1b with copper(II), reacts with salicylaldehyde to give A-3a or A-3b, respectively. And the product formed by reaction of B-1 with copper(II), reacts with pyridine-2-aldehyde to give B-3a or B-3b. The four binuclear copper(II) complexes thus isolated as the new compounds have been characterized by elemental analyses, u.v. and i.r. spectra, magnetic susceptibility, and electronic conductivity measurements. Attempts to exchange the reactants with one another were unsuccessful.  相似文献   

    6.
    本文研究了4,4′-联苯二甲腈在4,4′-联苯二甲腈氯化锌配合物催化下的聚合反应动力学,氰基浓度通过以铁氰化钾为内标的石腊糊法的红外光谱定量分析法测定。结果表明:该聚合反应是二级反应,聚合反应速度和氰基浓度及配合物浓度各成一次方比例。聚合反应表观活化能为12.4千卡/克分子。此外,也研究了不同的4,4′-联苯二甲腈金属氯化物配合物为催化剂对4,4′-联苯二甲腈聚合反应速度的影响,并对聚合反应机理进行了讨论。  相似文献   

    7.
    Several transition metal salts were found to catalyze aza-Michael reactions of enones with carbamates efficiently. The catalytic activity was strongly dependent on the nature of the metal salts. While conventional Lewis acids such as BF(3).OEt(2), AlCl(3), or TiCl(4) showed lower activity, group 7-11 transition metal salts in higher oxidation states such as ReCl(5), Fe(ClO(4))(3).9H(2)O, RuCl(3).nH(2)O, OsCl(3).3H(2)O, RhCl(3).nH(2)O, PtCl(4).5H(2)O, or AuCl(3).H(2)O exhibited higher catalytic activity. [reaction: see text]  相似文献   

    8.
    FeCl(3) in combination with t-BuOOt-Bu as an oxidant was found to be an efficient catalyst for oxidation of alkylamides to α-(tert-butoxy)alkylamides. FeCl(2) and CuCl showed, respectively, almost the same and slightly lower activities compared with FeCl(3) in the tert-butoxylation of N-phenylpyrrolidone (1a), whereas no tert-butoxylated product was obtained by use of Fe(OTf)(3), RuCl(3), or Zr(OTf)(4). FeCl(3) was found to be effective also as a catalyst for the Friedel-Crafts alkylation with thus obtained α-(tert-butoxy)alkylamides. The Friedel-Crafts alkylation proceeded smoothly also in the presence of a catalytic amount of Fe(OTf)(3), RuCl(3), or Zr(OTf)(4). In contrast, FeCl(2) and CuCl, which showed certain activity toward the tert-butoxylation, failed to promote the Friedel-Crafts alkylation. Among the transition metal complexes thus far examined, only FeCl(3) showed high catalytic activities for both the oxidation and the Friedel-Crafts alkylation. The bifunctionality of FeCl(3) was utilized for the oxidative coupling of alkylamides with arenes through a tandem reaction consisting of oxidation of alkylamides to α-(tert-butoxy)alkylamides and the following Friedel-Crafts alkylation. The FeCl(3)-catalyzed oxidative coupling is applicable to a wide variety of alkylamides and arenes, though a combination of FeCl(3) with Fe(OTf)(3) was found to be effective for the reaction of arenes with low nucleophilicity. A Fe(II)-Fe(III) catalytic cycle is concerned with the tert-butoxylation, whereas a Fe(III) complex as a Lewis acid catalyzes the Friedel-Crafts alkylation.  相似文献   

    9.
    The new Ar-BIAN complexes [(mes-BIAN)InCl(3)(THF)] (1), [(mes-BIAN)(2)Tl][PF(6)] (2), [(dipp-BIAN)SnCl(4)] (3), [(dipp-BIAN)SbCl(3)] (4), [(dipp-BIAN)BiCl(3)] (5) and [(mes-BIAN)BiCl(3)] (6) have been prepared by treatment of the neutral mes- and dipp-substituted BIAN ligands with the p-block reagents InCl(3), TlPF(6), SnCl(4), SbCl(3), and BiCl(3). The molecular structures of complexes 1-6 have been determined by single-crystal X-ray diffraction methods. However, only the atom connectivity was established for 5.  相似文献   

    10.
    The pronounced Lewis basic character of the metal atom in C5H5Co(PMe3)2 is demonstrated by its reactions with ZnCl2/PMe3, [(PMe3)2CuCl]2, SnCl4, R3SnCl (R  Me, Ph) and HgCl2 which lead to stable monocyclopentadienylcobalt complexes containing CoZn, CoCu, CoSn and CoHg bonds.  相似文献   

    11.
    The reactions of SbCl3 and HgCl2 with 2-(3-pyridyl)benzimidazole (PyBIm) in solution acidified with HCl have been investigated. The PyBIm ligands are protonated into 2-(3-pyridinio)benzimidazolium (H2PyBIm) cations and the corresponding metal ions are bonded with chloride atoms into coordination anions, forming two new coordination compounds, namely, (H2PyBIm)(SbCl5) 1 and (H2PyBIm)2(Hg2Cl8) 2. Both compounds were characterized by X-ray crystallography. Crystal data for 1: triclinic, space group P1 with a = 5.7030(7), b = 9.0625(11), c = 16.5929(18) , α = 91.808(7), β = 93.234(6), γ = 99.216(7)o, C12H11N3SbCl5, Mr = 496.24, V = 844.44(17) 3, Z = 2, Dc = 1.952 g/cm3, μ(MoKα) = 2.419 mm-1, F(000) = 480, the final R = 0.0496 and wR = 0.1382 for 3433 observed reflections (I > 2σ(I)). Crystal data for 2: monoclinic, space group P21/c with a = 7.8061(5), b = 15.8127(9), c = 12.2435(9) , β = 91.955(4)o, C24H22N6Hg2Cl8, Mr = 1079.26, V = 1510.40(17) 3, Z = 2, Dc = 2.373 g/cm3, μ(MoKα) = 10.889 mm-1, F(000) = 1008, the final R = 0.0293 and wR = 0.0562 for 2854 observed reflections (I > 2σ(I)). X-ray diffraction analysis reveals that the antimony(III) is five-coordinated, exhibiting a slightly distorted square-pyramidal coordination geometry; while in 2, a dimeric [Hg2Cl8]4-anion consists of two trigonal bipyramids sharing two common edges. The organic cations and coordination anions are connected into a one-dimensional belt and a two-dimensional sheet through N-H···Cl hydrogen bonding interactions in compounds 1 and 2, respectively; both are further aggregated into 3D frameworks by strong π-π contacts.  相似文献   

    12.
    Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
    The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

    13.
    Two mechanisms of the Scholl reaction were investigated in the series 1, 2, ..., n-oligophenylbenzenes (n = 2, 3, 4, 6) at the B3LYP/6-31G(d) level of theory. A mechanism involving generation of a radical cation followed by C-C bond formation and dehydrogenation is unlikely on the basis of unfavorable energies of activation. A mechanism involving generation of an arenium cation followed by C-C bond formation and dehydrogenation is energetically feasible. An explanation for the facile polycondensation of hexaphenylbenzene to hexa-peri-hexabenzocoronene, where six new aryl-aryl bonds are formed, is provided. Kinetic simulations based on the calculated activation energies of the arenium cation mechanism predict that intermediates will not accumulate; this is supported by mass balance experiments. Reaction optimization studies suggest that PhI(O2CCF3)2/BF3.OEt2 or MoCl5 are superior to FeCl3 or AlCl3/CuCl2. This is a full account of our work reported partially as a communication previously (Rempala, P.; Kroulík, J.; King, B. T. J. Am. Chem. Soc. 2004, 126, 15002-15003).  相似文献   

    14.
    An unusual disproportionation reaction of the molybdenum(IV) and tungsten(IV) chlorides [MCl4L2] (M=Mo, L=Et2S, Et2O; M=W; L= Et2S) in the presence of p-tBu-calix[4]arene (Cax(OH)4) and triethylamine leads to d0 complexes [(CaxO4)[CaxO2(OH)2]M] (1) and d3 compounds (HNEt3)2[(CaxO4)2M2] (2). Complexes la (M = Mo), 1b (M = W), and the HCl adduct of 2a (M = Mo) have been structurally characterized. Compound 1a represents one of the few examples of a well-characterized molybdenum(VI) hexa-alkoxide complex of the type [Mo(OR)6]. Isolation and structural characterization of the side product [(CaxO4W)[kappa2(O)-kappa1(O)-CaxO3(OH)](CaxO4WCl)] (3) suggests the intermediacy of chloro-containing calix[4]arene complexes in these reaction mixtures. The reaction of 1a with HCI provides [CaxO4MoCl2] (4a), the first well-defined example of a mixed molybdenum(VI) alkoxide halide compound of the general formula [MoClx(OR)6-x].  相似文献   

    15.
    Depending on experimental conditions and the nature of the hydrazine, the reactions of ReCl3P3 [P = PPh(OEt)2] with RNHNH2 (R = H, CH3, tBu) afford the bis(dinitrogen) [Re(N2)2P4]+ (2+), dinitrogen ReClN2P4 (3), and methyldiazenido [ReCl(CH3N2)(CH3NHNH2)P3]+ (1+) derivatives. In contrast, reactions of ReCl3P3 [P = PPh(OEt)2, PPh2OEt] with arylhydrazines ArNHNH2 (Ar = Ph, p-tolyl) give the aryldiazenido cations [ReCl(ArN2)(ArNHNH2)P3]+ (4+) and [ReCl(ArN2)P4]+ (7+) and the bis(aryldiazenido) cations [Re(ArN2)2P3]+ (5+, 6+). These complexes were characterized spectroscopically (IR; 1H and 31P NMR), and the BPh4 complexes 1, 2, and 7 were characterized crystallographically. The methyldiazenido derivative [ReCl(CH3N2)(CH3NHNH2)(PPh(OEt)2)3][BPh4] (1) crystallizes in space group P1 with a = 15.396(5) A, b = 16.986(5) A, c = 11.560(5) A, alpha = 93.96(5) degrees, beta = 93.99(5) degrees, gamma = 93.09(5) degrees, and Z = 2 and contains a singly bent CH3N2, group bonded to an octahedral central metal. One methylhydrazine ligand, one Cl- trans to the CH3N2, and three PPh(OEt)2 ligands complete the coordination. The complex [Re(N2)2(PPh(OEt)2)4][BPh4] (2) crystallizes in space group Pbaa with a = 23.008(5) A, b = 23.367(5) A, c = 12.863(3) A, and Z = 4. The structure displays octahedral coordination with two end-on N2 ligands in mutually trans positions. [ReCl(PhN2)(PPh(OEt)2)4][BPh4] (7) crystallizes in space group P2(1)/n with a = 19.613(5) A, b = 20.101(5) A, c = 19.918(5) A, beta = 115.12(2) degrees, and Z = 4. The structure shows a singly bent phenyldiazenido group trans to the Cl- ligand in an octahedral environment. The dinitrogen complex ReClN2P4 (3) reacts with CF3SO3CH3 to give the unstable methyldiazenido derivative [ReCl(CH3N2)P4][BPh4]. Reaction of the methylhydrazine complex [ReCl(CH3N2)(CH3NHNH2)P3][BPh4] (1) with Pb(OAc)4 at -30 degrees C results in selective oxidation of the hydrazine, affording the corresponding methyldiazene derivative [ReCl(CH3N=NH)(CH3N2)P3][BPh4] (8). In contrast, treatment with Pb(OAc)4 of the related arylhydrazines [ReCl(ArN2)(ArNHNH2)P3][BPh4] (4) [P = PPh(OEt)2] gives the bis(aryldiazenido) complexes [Re(ArN2)2P3][BPh4] (5). Possible protonation reactions of Br?nsted acids HX with all diazenides, 1, 4, 5, 6, and 8, were investigated and found to proceed only in the cases of the bis(aryldiazenido) complexes 5 and 6, affording, with HCl, the octahedral [ReCl(ArN=NH)(ArN2)P3][BPh4] or [ReCl(Ar(H)NN)(ArN2)P3][BPh4] (10) (Ar = Ph; P = PPh2OEt) derivative.  相似文献   

    16.
    The unique electronic and structural nature of the alpha-acylphosphonate functional group affords both dimeric and chelated complexes of diethyl crotonyl phosphonate (1; DECP) with stannic chloride (SnCl(4)). The dimeric complex, SnCl(4).(DECP)(2) (5) results from the coordination of two DECP molecules, ligated via the phosphoryl oxygens to the tin atom. The chelated complex, SnCl(4).(DECP) (6), is best represented with both phosphoryl and carbonyl oxygens coordinated to the metal center. Both metal ligated and chelated complexes have unique (13)C (31)P, and (119)Sn NMR spectra. In complex 5, the (13)C NMR resonances attributed to the carbonyl carbons were shifted upfield of free DECP. A monocoordinating Lewis acid, BF(3).OEt(2), produced a similar chemical shift trend in both the (13)C and (31)P NMR spectra of the BF(3).DECP complex. Essentially quantitative yields and moderate diastereomeric excesses favoring anti (or trans) diethyl 6-phenyl-4,5-dimethyl-6-(trimethylsilyloxy)-2-dihydropyranphosphonate (3) and diethyl 5-phenyl-3,4-dimethyl-1,5-dioxopentanephosphonate (4) were obtained from both chelated and dimeric SnCl(4).(DECP)(n) (n = 1, 2) when treated with either diastereomeric (Z)- or (E)-1-phenyl-1-(trimethylsilyloxy)-1-propene 2. Diethyl crotonylphosphonate (1), 3, and 4 were fully characterized.  相似文献   

    17.
    Immobilized metal ion-containing ionic liquid catalysts were prepared by the reaction between silyl-functionalized imidazolium ionic molecules and surface silanol groups of silica, followed by addition of MnCl2, FeCl2, CoCl2, NiCl2, CuCl2, or PdCl2; only the immobilized copper catalyst, which has a sandwiched CuCl4(2-) moiety, was very active for the Kharasch reaction between styrene and CCl4.  相似文献   

    18.
    Research on Chemical Intermediates - The synthesis of 5-ethoxymethylfurfural (EMF) from glucose using metal chlorides or combined metal–surfactant catalysts as Lewis acids in a solution of...  相似文献   

    19.
    Treatment of 5-nitroisocoumarin with aromatic acyl chlorides under Friedel-Crafts conditions gives 3-aryl-5-nitroisocoumarins, rather than the expected 4-acyl-5-nitroisocoumarins. This procedure was optimized for reaction temperature (150 degrees C), solvent (nitrobenzene), and Lewis acid (SnCl4). Reaction of 5-nitroisocoumarin with [13C]-carbonyl benzoyl chloride under the optimum conditions gave 5-nitro-3-phenylisocoumarin in which the 13C is located at the 3-C of the heterocycle, indicating that the benzoyl carbon framework is incorporated intact.  相似文献   

    20.
    [reaction: see text] An efficient synthesis of highly substituted alpha-arylnaphthalene analogues has been developed utilizing Lewis acid-promoted regiocontrolled benzannulation of aryl(aryl')-2,2-dichlorocyclopropylmethanols (aryl not equal aryl'; abbreviated as AACMs). Both AACM diastereomers were easily prepared via highly stereoselective addition (>95/5) of ArLi to gem-dichlorocyclopropropyl aryl' ketones. The choice of Lewis acids determined the cyclization regioselectivity of the present benzannulation. TiCl4 and SnCl4 used the chelation pathway, whereas silyl triflates used a nonchelation pathway to give unsymmetrically substituted regioisomeric alpha-arylnaphthalenes in 40-91% yields with moderate to excellent regioselectivity (TiCl4 or SnCl4; >99/1-3/1, TBDMSOTf; >1/99-1/4). Thus, the alpha-aryl or alpha-aryl' moiety (accessory aryl group) was alternatively introduced to alpha-arylnaphthalenes by choosing either the order of the reaction sequences or the appropriate catalyst. Application of the present method to the total synthesis for unsymmetrically substituted natural lignan lactones, justicidin B, retrojusticidin B, dehydrodesoxypodophyllotoxin, and a related analogue, 5'-methoxyretrochinensin, was demonstrated. Lignan retrolactones (retrojusticidin B and 5'-methoxyretrochinensin) were synthesized by the conventional lactonization of the diol precursor, whereas a novel Bu2SnO-mediated monoacylation method was applied to the synthesis of normal lignan lactones (justicidin B and dehydrodesoxypodophyllotoxin).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号