首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water/hydrocarbon interfaces are studied using molecular dynamics simulations in order to understand the effect of hydrocarbon branching on the dynamics of the system at and away from the interface. A recently proposed procedure for studying the intrinsic structure of the interface in such systems is utilized, and dynamics are probed in the usual laboratory frame as well as the intrinsic frame. The use of these two frames of reference leads to insight into the effect of capillary waves at the interface on dynamics. The systems were partitioned into zones with a width of 5 A, and a number of quantities of dynamical relevance, namely, the residence times, mean squared displacements, the velocity auto correlation functions, and orientational time correlations for molecules of both phases, were calculated in the laboratory and intrinsic frames at and away from the interface. For the aqueous phase, translational motion is found to be (a) diffusive at long times and not anomalous as in proteins or micelles, (b) faster at the interface than in the bulk, and (c) faster upon reduction of the effect of capillary waves. The rotational motion of water is (a) more anisotropic at the interface than in the bulk and (b) dependent on the orientation of the covalent O-H bond with respect to the plane of the interface. The effect of hydrocarbon branching on aqueous dynamics was found to be small, a result similar to the effect on the interfacial water structure. The hydrocarbon phase shows a larger variation for all dynamical probes, a trend consistent with their interfacial structure.  相似文献   

2.
Hruska V  Jaros M  Gas B 《Electrophoresis》2006,27(3):513-518
Chemical oscillations are driven by the gradient of the chemical potential so that they can appear in systems where the substances are not in chemical equilibrium. We show that under the influence of the electric field, concentrations of electrically charged substances in solutions can oscillate even if the system is in chemical equilibrium. The driving force here is not the gradient of the chemical potential but rather the gradient of the electric potential. Utilizing CE we found periodic structures invoked by the application of a constant driving voltage in BGEs possessing complex eigenmobilities. By analogy with the behavior of dynamic systems, complex eigenmobilities implicate that the system will be unstable. Instead of forming system zones (system peaks) in the separation channel (capillary) the originally uniform concentration of electrolyte constituents becomes periodically disturbed when the electric current passes through it.  相似文献   

3.
We present an x‐ray reflectivity study of the water–propane interface. The vertical structure of the interface is analyzed and the adsorption of thin layers of propane on the water surface is observed. An increase of layer thickness with rising pressure is found. The electron density of the thin films is identical with the corresponding value of bulk liquid propane. From the adsorption isotherm we determine the Hamaker constant of the system, which shows a considerably higher value compared to calculations based on the Lifshitz theory. The surface tension of the molecularly thin layer is reduced in comparison to the bulk value. The measured surface roughness is in good agreement with a modified model based on capillary wave fluctuations of the water‐propane–gas interfaces. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Synchrotron X-ray reflectivity is used to study the electron density as a function of depth through the bulk nitrobenzene-water interface at four different temperatures. The measured interfacial width differs from the predictions of capillary wave theory with a progressively smaller deviation as the temperature is raised. Computer simulations suggest the presence of both molecular layering and dipole ordering parallel to the interface. Either layering or a bending rigidity, that can result from dipole ordering, can explain these measurements.  相似文献   

5.
Ion transfer across the polarized interface between a room-temperature ionic liquid (RTIL) or room-temperature molten salt, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THAC(1)C(1)N), and water has been studied voltammetrically using a micro liquid-liquid interface formed at the orifice of a glass capillary micropipette. A small current of nanoampere level circumvents the problem of the iR drop in the viscous ionic liquid phase. Voltammograms for the transfer of moderately hydrophilic ions, such as BF(4)(-) and ClO(4)(-), from the aqueous phase in the capillary to the bulk of THAC(1)C(1)N in which the capillary is submerged, show steady-state characteristics in that the current does not depend on the scan rate up to a few hundred millivolt per second, and the plateau in the limiting current region is proportional to the bulk concentration of analyte ions. Owing to the steady-state current, which is presumably ascribed to a noncylindrical geometry of the capillary tip, the relative magnitude of the hydrophobicity, or the affnity to the RTIL, of a series of ions can be determined from the half-wave potentials of voltammograms.  相似文献   

6.
This work describes a system to interface either microbore or packed capillary gradient liquid chromatography (LC) to fast atom bombardment mass spectrometry (FAB-MS). The interface incorporates on-line ultraviolet detection and post-column matrix addition to enable independent optimization of both LC and FAB-MS. The glycopeptide antibiotic teicoplanin was chosen as a model system because this group of compounds places severe demands on the chromatographic separation and is difficult to analyze by FAB-MS. For both microbore and capillary LC, high-quality mass spectra of the major components in teicoplanin were obtained; however, the increased sensitivity of the capillary system allowed spectra to be obtained at low picomole concentrations. The sensitivity and ease of use make capillary LC the preferred system for use in LC-FAB-MS.  相似文献   

7.
We investigate the interaction between a nanoparticle and an oil-water interface with particular emphasis on the particle crossing through the interface. The formation of a three-phase contact line is investigated in two cases, namely in the presence and in the absence of surface forces. We carefully examine the interplay between capillary and surface forces in such systems. Two instabilities of the interface (snap-in/snap-out) as the particle is moved through the interface are identified and quantitatively described. While the snap-in instability was observed in some AFM studies, the precise interface position and configuration relative to the particle at the instability depends on the nature of the surface forces present in the system. After the snap-in, the particle is adsorbed and must overcome an energy barrier due to the interface deformation in order to cross-over to the other liquid. We make quantitative predictions on the interface configuration at the instabilities and the free energy barrier height. The roles of particle size and different interaction parameters characterizing the system in determining the magnitude of the energy barrier for crossing and in the formation of a three-phase contact line are discussed. Ultimately, this study will enable us to make quantitative predictions on capillary effects in nanoparticle-microemulsions mixtures and other colloidal systems. For particles in the micrometer range and larger the capillary forces dominate over the surface forces and dictate how the snap-in occurs. However, the situation becomes different for particle sizes smaller than about 100 nm. The presence of surface forces modifies the interface configuration and the free energy jump at the snap-in instability.  相似文献   

8.
The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.  相似文献   

9.
The voltage-induced assembly of mercaptosuccinic acid-stabilized Au nanoparticles of 1.5 +/- 0.4 nm diameter is investigated at the polarizable water/1,2-dichloroethane interface. Admittance measurements and quasi-elastic laser scattering (QELS) studies reveal that the surface concentration of the nanoparticle at the liquid/liquid boundary is reversibly controlled by the applied bias potential. The electrochemical and optical measurements provide no evidence of irreversible aggregation or deposition of the particles at the interface. Analysis of the electrocapillary curves constructed from the dependence of the frequency of the capillary waves on the applied potential and bulk particle concentration indicates that the maximum particle surface density is 3.8 x 10(13) cm(-2), which corresponds to 67% of a square closed-pack arrangement. This system provides a unique example of reversible assembly of nanostructures at interfaces, in which the density can be effectively tuned by the applied potential bias.  相似文献   

10.
The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature.  相似文献   

11.
The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.  相似文献   

12.
13.
We follow the evolution of the H(2)O/CO(2) interface at 300 K from the low pressure limit to near-critical pressures in molecular dynamics simulations using the SPC water and EPM2 carbon dioxide models. The intrinsic structure of the interface is elucidated by accumulating density profiles relative to the fluctuating capillary wave surface. Our main finding is that a carbon dioxide film of increasing density and thickness grows in two stages at the interface while the structure of the water surface barely changes. At low density, the entire film density profile grows linearly with the bulk CO(2) density. This regime continues up to a bulk CO(2) density of roughly 0.00095 ?(-3). At pressures above this point, we observe a distinct second peak in the CO(2) density, along with a tail of excess density that decays exponentially with distance from the interface. The decay length of the exponential tail diverges with increasing CO(2) pressure according to an inverse power law decay. Over the entire range of pressures, the CO(2) film had no detectable effect on the orientational order of the water surface. As expected, when the film of excess CO(2) at the interface grows, we find that the surface tension drops with increasing pressure. This is in qualitative accord with existing measurements, although the rate at which the surface tension falls with increasing pressure according to the SPC and EPM2 models is too small, indicating that the surface excess of CO(2) is underestimated by these models.  相似文献   

14.
We review concepts and provide examples for the controlled structuring of biopolymer particles in hydrodynamic flow fields. The structuring concepts are grouped by the physical mechanisms governing drop deformation and shaping: (i) capillary structuring, (ii) shear and elongational structuring and (iii) confined flow methods. Non-spherical drops can be permanently structured if a solidification process, such as gelation or glass formation in the bulk or at the interface, is superimposed to the flow field. The physical and engineering properties of these processes critically depend on an elaborate balance between capillary phenomena, rheology, gel or glass formation kinetics, and bulk heat, mass and momentum transfer in multiphase fluids. This overview is motivated by the potential of non-spherical suspension particles, in particular those formed from ‘natural’ and ‘sustainable’ biopolymers, as rheology modifiers in food materials, consumer products, cosmetics or pharmaceuticals.  相似文献   

15.
The development of a simple interface between liquid chromatography and infrared spectroscopy (LC-IR) using a coaxial sprayer is described for less volatile analytes. The system consists of a transfer capillary, in which the analytes are transported from the separation column of the gradient-LC to the outlet of the sprayer. This transfer capillary is coaxially surrounded at the outlet by a stainless steel sprayer capillary, which is resistively heated and flushed with nitrogen gas. The samples are sprayed in the manner that the eluent is vaporized by the heated nitrogen when exiting the capillary, while the analytes are deposited on a moving slide made of infrared transparent material (ZnSe or CaF2). Afterwards the deposited compounds are analyzed with an infrared microscope in transmission. First results from reaction products of the gas phase reaction of alpha-pinene with ozone are presented.  相似文献   

16.
Current methods of studying the rheological properties of interfacial layers at the interfaces of fluids are reviewed. This area of research includes two-dimensional 2D rheology. Regardless of the similarities between the parameters of rheological properties of two-dimensional and bulk (three-dimensional) systems, when measuring surface properties, it is necessary to reformulate the main experimental methods to allow for the different dimensions of surface and bulk characteristics of material. Parameters of shear and dilational (measured upon expansion-compression) properties of interfacial layers are distinguished, and the latter are considered to be independent parameters of a system. The most attention was given to the rotational methods of measuring shear viscosity and the components of the complex 2D elastic modulus, as well as to measuring surface tension upon harmonic changes of the bubble (droplet) surface area, which allows characteristics of the dilational behavior of thin liquid films to be determined. Both groups of methods are widely used in laboratory practice and realized in the form of a number of original and commercial instruments. Dilational measurements of interfacial layers can also be performed with oscillations of a movable barrier on a Langmuir trough. In addition, methods based on the propagation of capillary waves across the surface of a liquid, as well as rarer methods of capillary flow in thin channels forced by either a surface tension gradient or the motion of the interface, are considered.  相似文献   

17.
Relationships between formulation, bulk properties, and surface properties are investigated on series of copolymers prepared with hydroxyethylmethacrylate (HEMA), methylmethacrylate (MMA), and ethylmethacrylate (EMA) monomers, and on the homopolymers PMMA and PHEMA. The bulk water content, swelling ratio, and static (sessile drop and captive bubble) and dynamic (Wilhelmy plate technique) contact angles and the electrokinetic potential (streaming potential) are measured. The bulk water content and swelling ratio of HEMA copolymers are proportional to the amount of HEMA and are linearly correlated to the contact angle hysteresis. Periodic instabilities in the wetting cycles, similar to Haines jumps, are observed with HEMA copolymers and support a bidirectional relaxation of the hydrophilic groups respectively towards external water and capillary water. The origin of the electrokinetic potential of these nonionizable polymers is attributed to specific adsorption of [Formula: see text] ions. Its dependence on surface hydrophobicity and statistical length of the side-chains is interpreted in terms of the properties of water molecules near the interface.  相似文献   

18.
A movable disc-like wire probe electrode placed inside the electrospray (ES) capillary was used to measure currents flowing within the ES device for the first time. Currents were measured between the wire probe and the ES capillary. Current maps revealing measured current versus wire probe position were generated for a variety of solution conditions in the positive and negative ion modes and are compared to potential maps. The electrospray device was found to subsist on highly stable total currents; this current regulator aspect of the ES device showed remarkable resiliency regardless of the proportion of current produced at the wire probe electrode versus the ES capillary. However, kinks observed in the current and potential maps are attributed to adsorbed air participating in electrochemical reactions, and turbulence in solution flow in the region of the Taylor cone. From differential electrospray emitter potential (DEEP) maps, current maps, and cyclic voltammetry experiments performed at different wire probe locations, evidence is provided for separate regimes of current flow in the bulk solution and in the thin "skin" of highly conductive electrolyte constituting the outer surface (air interface) of the Taylor cone. Current maps reveal that current is drawn more evenly along the length of the ES capillary when solutions are highly conductive, in agreement with previous results for DEEP maps. In less conductive solutions, the area close to the capillary exit contributes more heavily to current production. Evidence that contaminant participation in electrochemical processes occurring within the electrospray device can be largely responsible for production of the excess charge in ES droplets is also provided. These investigations complement previous DEEP mapping studies to further elucidate the details of the electrochemical processes occurring within the electrospray device.  相似文献   

19.
Molecular-dynamics simulations were performed to model the effect of added salt ions on the liquid-liquid interface in a partially miscible system. Simulations of the interface between saturated phases of a model 1-hexanol+water system show a bilayer structure of 1-hexanol molecules at the interface with -OH heads of the first layer directed into the water phase and the opposite orientation for the second layer. The alignment of the polar -OH groups at the interface stabilizes a charge separation of sodium and chloride ions when salt is introduced into the aqueous phase, producing an electrical double layer. Chloride ions aggregate nearer the interface and sodium ions move toward the bulk water phase, consistent with the explanation that the -OH alignment presents a region of partial positive charges to which the hydrated chloride atoms are attracted. Ions near the interface were found to be less solvated than those in the bulk phase. An electric field was also applied to drive ions through the interface. Ions crossing the interface tended to shed water molecules as they entered the hexanol bilayer, leaving a trail of water molecules. Stabilization and facilitated transport of the ion by interactions with the second layer of hexanol molecules appeared to be an important step in the mechanism of sodium ion transport.  相似文献   

20.
The results of theoretical and experimental studies of spontaneous nonlinear oscillations produced at the liquid/liquid interface by surfactant transfer from a point source situated in one of the bulk phases are presented. The theoretical analysis is based on the direct numerical simulation of the system evolution. The experiments are performed for the heptane/water interface using middle-chain aliphatic alcohols as surfactants. The results for the oil/water interface are compared with the corresponding data obtained for the air/water interface. The presented results allow the conclusion that auto-oscillations at the air/liquid and liquid/liquid interfaces are governed by very similar mechanisms but their characteristics are strongly dependent on the properties of the two contacting media, in particular, on the surfactant partition coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号