首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, the mechanism and kinetics of the reaction of perfluoropolymethylisopropyl ether (PFPMIE) with OH radical are studied. The reaction between PFPMIE and OH radical is initiated through breaking of C–C or C–O bond of PFPMIE. These reactions lead to the formation of COF2 molecules and alkyl radical. The pathways corresponding to the reaction between PFPMIE and OH radical have been modelled using density functional theory methods M06-2X and MPW1K with 6-31G(d,p) basis set. It is found that the C–C bond breaking reaction is most favourable than the C–O bond breaking reaction. The subsequent reactions of the alkyl radicals, formed from the C–C bond breaking reactions, are studied in detail. The rate constant for the initial oxidation reactions is calculated using canonical variational transition state theory with small curvature tunnelling corrections over the temperature range of 278–350 K. From the calculated reaction, potential energy surface and rate constant, the lifetime and global warming potential of PFPMIE are studied.  相似文献   

2.
The results from experiments on reactions of the coordinated molecular decay of RBr bromoalkanes on olefin and HBr are analyzed using the model of intersecting parabolas (MIP). Kinetic parameters within the MIP are calculated from the experimental data, enabling calculation of the activation energies (E) and rate constants (k) of such reactions, based on the enthalphy of the reaction and the MIP algorithms. The factors affecting the E of the RBr decay reaction are established: the enthalphy of the reaction, triplet repulsion, the energy of radical R? stabilization, the presence of a π bond adjacent to the reaction center, and the dipole–dipole interaction of polar groups. The energy spectrum of the partial energies of activation is constructed for the reaction of coordinated molecular decay of RBr, and the E and k of inverse addition reactions are evaluated.  相似文献   

3.
Activation enthalpies and energies and the rate constants of reactions with peroxyl, alkyl, and thiyl radicals (76 reactions) were calculated for a group of natural antioxidants (19 monohydroxy and polyhydroxy phenols). The calculation was performed with the use of the model of a radical abstraction reaction as the intersection of two parabolic potential curves. The results of the calculation were compared with experimental data: the average discrepancy in the activation energies of the reactions RO 2 ? + ArOH was 0.8 kJ/mol. Interatomic distances in the reaction centers of the transition states of the test reactions were calculated. Factors affecting the reactivity of these compounds are discussed.  相似文献   

4.
The reaction of nitrosodimethylamine, nitrosoazetidine, nitrosopyrrolidine, and nitrosopiperidine with the hydroxyl radical has been studied using electronic structure calculations in gas and aqueous phases. The rate constant was calculated using variational transition state theory. The reactions are initiated by H‐atom abstraction from the αC─H group of nitrosamines and leads to the formation of alkyl radical intermediate. In the subsequent reactions, the initially formed alkyl radical intermediate reacts with O2 forming a peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals, is studied. The structures of the reactive species were optimized by using the density functional theory methods, such as M06‐2X, MPW1K, and BHandHLYP, and hybrid methods G3B3. The single‐point energy calculations were also performed at CCSD(T)/6‐311+G(d,p)// M062X/6‐311+G(d,p) level. The calculated thermodynamical parameters show that the reactions corresponding to the formation of intermediates and products are highly exothermic. We have calculated the rate constant for the initial H‐atom abstraction and subsequent favorable secondary reactions using canonical variational transition state theory over the temperature range of 150–400 K. The calculated rate constant for initial H‐atom abstraction reaction is ∼3 × 10−12 cm3 molecule−1 s−1 and is in agreement with the previous experimental results. The calculated thermochemical data and rate constants show that the reaction profile and kinetics of the reactions are less dependent on the number of methyl groups present in the nitrosoamines. Furthermore, it has been found that the atmospheric lifetime of nitrosamines is around 5 days in the normal atmospheric OH concentration.  相似文献   

5.
The rate constant for the reaction of phenyl radical with hydrogen bromide has been measured with the cavity-ring-down method at six temperatures between 297 and 523 K. The Arrhenius expression for the H abstraction reaction can be effectively given by: . The values of these parameters are similar to those for the H + HBr reaction, but are in sharp contrast to those for alkyl radical reactions. The gross difference between the alkyl radical reactions and the phenyl and H-atom reactions could be rationalized in terms of the inductive effects of these radicals as measured by Taft's σ* (polar) constants. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
氢过氧自由基从烷烃分子中提取氢的反应是碳氢燃料中低温燃烧化学中非常重要的一类反应。本文用等键反应方法计算了这一类反应的动力学参数。所有反应物、过渡态、产物的几何结构均在HF/6-31+G(d)水平下优化得到。以反应中的过渡态反应中心的几何结构守恒为判据,该反应类可用等键反应处理。本文选取了乙烷和氢过氧自由基的氢提取反应为参考反应,其它反应作为目标反应,用等键反应方法对目标反应在HF/6-31+G(d)水平的近似能垒和反应速率常数进行了校正。为了验证方法的可靠性,选取C5以下的烷烃分子体系,对等键反应方法校正结果和高精度CCSD(T)/CBS直接计算结果进行了比较,最大绝对误差为5.58k J?mol~(-1),因此,采用等键反应方法只需用低水平HF从头算方法就可以再现高精度CCSD(T)/CBS计算结果,从而解决了该反应类中大分子体系的能垒的精确计算。本文的研究为碳氢化合物中低温燃烧模拟中重要的烷烃与氢过氧自由基氢提取反应提供了准确的动力学参数。  相似文献   

7.
The mechanisms of reactions between CCI3OO radical and quercetin, rutin and epigal-locatechin gallate (EGCG) have been studied using pulse radiolytic technique. It is suggested that the electron transfer reaction is the main reaction between CCI3OO radical and rutin, EGCG, but there are two main pathways for the reaction of CCI3OO" radical with quercetin, one is the electron transfer reaction, the other is addition reaction. The reaction rate constants were determined. It is proved that quercetin and rutin are better CCI3OO radical scavengers than EGCG.  相似文献   

8.
The enthalpies, activation energies, and rate constants for the reactions of 15 phenoxyl radicals derived from natural bioantioxidants with hydroperoxides, C-H bonds of linoleic acid, SH-groups of l-cysteine, and O-H bonds of α-tocopherol (60 reactions) were calculated. The activation energies were calculated using the model of intersecting parabolas. The interatomic distances in the reaction sites of the transition states of the studied reactions were calculated. The factors affecting the reactivity of these radicals are discussed. The activation energy of the reaction of oxygen with the O-H bond of the 1,2-dihydroxybenezene semiquinone radical was estimated.  相似文献   

9.
The major bimolecular product of alkyl + O(2) reactions is alkene + hydroperoxyl radical (HO(2)), but in the reverse direction, the reactants are reformed to a very limited extent only. The most important products of the alkene + HO(2) reactions are alkylperoxy radical (ROO(?)), hydroxyl radical (OH) + cyclic ether, and the corresponding hydroperoxyalkyl ((?)QOOH) species. Moreover, abstraction of allylic hydrogens can compete with the addition, further complicating the possible outcome of this reaction type and its effect on low-temperature combustion chemistry. In this paper, six alkene + HO(2) reactions and the reaction between an unsaturated oxygenate and HO(2) are studied based on previously established potential energy surfaces. The studied unsaturated compounds are ethene, propene, 1-butene, trans-2-butene, isobutene, cyclohexene, and vinyl alcohol. Using multiwell master equations, temperature- (300-1200 K) and pressure-dependent rate coefficients and branching fractions are calculated for these reactions. The importance of this reaction type for the combustion of unsaturated compounds is also assessed, and we show that, to get reliable results, it is important to include the pressure-dependence of the rate coefficients in the calculations.  相似文献   

10.
The potential energy surfaces (PES) for the reaction of the C(2)H radical with 1-butyne (C(4)H(6)) have been studied using the CBS-QB3 method. Density functional B3LYP/cc-pVTZ and M06-2X/6-311++G(d,p) calculations have also been performed to analyze the reaction energetics. For detailed theoretical calculation on the total reaction mechanism, the initial association reactions on more and less substituted C atoms of 1-butyne are treated separately followed by a variational transition state theory (VTST) calculation to obtain reaction rates. The successive unimolecular reactions from the association reaction complexes are subjected to Rice-Ramsperger-Kassel-Marcus (RRKM) calculations for reaction rate constants and product branching ratios. The calculated rate constants in the temperature range 70-295 K for both the association reactions are found to be highly temperature dependent at low temperatures, which is contrary to the experimental findings of temperature independent association rates. We have explained this observation with the help of variational nature of the transition states, and we found a "loose" transition state at low temperatures. The calculated product branching ratios for the unimolecular reactions generally agree with the available experimental data, although some channels show a significant method dependency and therefore the correlation with experiment is lost to some extent. Our detailed reaction energetics calculations confirm that the C(2)H + C(4)H(6) reaction proceeds without an entrance barrier and leads to the important products ethynylallene + CH(3), 1,3-hexadiyne + H, 3,4-hexadiene-1-yne + H, 2-ethynyl-1,3-butadiene + H, 3,4-dimethylenecyclobut-1-ene + H and fulvene + H exothermic by 25-75 kcal mol(-1), with strong dependence of the product distribution on the association mode of C(2)H with C(4)H(6), making these reactions fast under low temperature conditions of Titan's atmosphere. Therefore this study can provide a detailed picture of the complex hydrocarbon formation mechanism in the upper atmosphere.  相似文献   

11.
The ring-opening reactions of the radical cations of hexamethyl Dewar benzene (1) and Dewar benzene have been studied using density functional theory (DFT) and complete active-space self-consistent field (CASSCF) calculations. Compound 1 is known to undergo photoinitiated ring opening by a radical cation chain mechanism, termed "quantum amplified isomerization" (QAI), which is due to the high quantum yield. Why QAI is efficient for 1 but not other reactions is explained computationally. Two radical cation minima of 1 and transition states located near avoided crossings are identified. The state crossings are characterized by conical intersections corresponding to degeneracy between doublet surfaces. Ring opening occurs by formation of the radical cation followed by a decrease in the flap dihedral angle. A rate-limiting Cs transition state leads to a second stable radical cation with an elongated transannular C-C bond and an increased flap dihedral. This structure proceeds through a conrotatory-like pathway of Cs symmetry to give the benzene radical cation. The role of electron transfer was investigated by evaluating oxidation of various systems using adiabatic ionization energies and electron affinities calculated from neutral and cation geometries. Electron-transfer theory was applied to 1 to investigate the limiting effects of back-electron transfer as it is related to the unusual stability of the two radical cations. Expected changes in optical properties between reactants and products of Dewar benzene compounds and other systems known to undergo QAI were characterized by computing frequency-dependent indices of refraction from isotropic polarizabilities. In particular, the reaction of 1 shows greater contrast in index of refraction than that of the Dewar benzene parent system.  相似文献   

12.
The reaction of CH2SH radical with fluorine atom was studied at the levels of B3LYP/6-311G(d,p) and MP2(Full)/6-311G(d,p). The computational results show that the reaction has three channels and proceeds by the addition of fluorine atoms on carbon or sulfur sites of CH2SH, forming initial intermediates. The calculated results show that the channel in which fluorine attaches to the carbon atom to form CH2S and HF, is the most likely reaction pathway. Topological analysis of electron density was carried out for the three channels. The change trends of the chemical bonds on the reaction paths were discussed. The energy transition states and the structure transition regions (states) of the three channels were found. The calculated results show that the structure transition regions are broad in unobvious exothermic reactions or unobvious endothermic reactions, and are narrow in obvious exothermic reactions or obvious endothermic reactions.  相似文献   

13.
Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(?)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(?)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.  相似文献   

14.
We investigate the statistical thermodynamics and kinetics of the 1,5-hydrogen shift isomerization reaction of the 1-butoxyl radical and its reverse isomerization. The partition functions and thermodynamic functions (entropy, enthalpy, heat capacity, and Gibbs free energy) are calculated using the multi-structural torsional (MS-T) anharmonicity method including all structures for three species (reactant, product, and transition state) involved in the reaction. The calculated thermodynamic quantities have been compared to those estimated by the empirical group additivity (GA) method. The kinetics of the unimolecular isomerization reaction was investigated using multi-structural canonical variational transition state theory (MS-CVT) including both multiple-structure and torsional (MS-T) anharmonicity effects. In these calculations, multidimensional tunneling (MT) probabilities were evaluated by the small-curvature tunneling (SCT) approximation and compared to results obtained with the zero-curvature tunneling (ZCT) approximation. The high-pressure-limit rate constants for both the forward and reverse reactions are reported as calculated by MS-CVT/MT, where MT can be ZCT or SCT. Comparison with the rate constants obtained by the single-structural harmonic oscillator (SS-HO) approximation shows the importance of anharmonicity in the rate constants of these reactions, and the effect of multi-structural anharmonicity is found to be very large. Whereas the tunneling effect increases the rate constants, the MS-T anharmonicity decreases them at all temperatures. The two effects counteract each other at temperatures 385 K and 264 K for forward and reverse reactions, respectively, and tunneling dominates at lower temperatures while MS-T anharmonicity has a larger effect at higher temperatures. The multi-structural torsional anharmonicity effect reduces the final reverse reaction rate constants by a much larger factor than it does to the forward ones as a result of the existence of more low-energy structures of the product 4-hydroxy-1-butyl radical than the reactant 1-butoxyl radical. As a consequence there is also a very large effect on the equilibrium constant. The neglect of multi-structural anharmonicity will lead to large errors in the estimation of reverse reaction rate constants.  相似文献   

15.
16.
B3LYP/6-31++G(d) method was used for the structural study of 3,4,5-trihydroxybenzoic acid (3,4,5-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA), and 4-hydroxybenzoic acid (4-HBA). Calculated structures agree with available X-ray experimental data within 2%. The phenolic OH bond dissociation enthalpy (BDE) of all sites in each benzoic acid were determined and compared with those of phenol (for 4-HBA) and catechol (for 3,4-DHBA). The consistency between the calculated values and experimental ones are within 5.4% and 9.2%, respectively, for 4-HBA and 3,4-DHBA. The reactions of benzoic acids with and OH radicals were studied and it turns out that benzoic acids react differently with both radicals. We have shown that the reaction of hydroxybenzoic acids with the hydroxyl radical was governed by a phenolic hydrogen (H+ + e) transfer from the acid to the radical, while for the superoxide radical, the reaction is governed by a proton (H+) transfer from the acid to the radical. The first reaction is evidenced by the delocalization of the radical on the entire quinone moiety, and the second reaction is evidenced by the negative NBO charge on the phenoxide moiety as well as the localization of the radical on the hydroperoxy (O2H) moiety.  相似文献   

17.
The experimental results for the concerted molecular decomposition of alkyl iodides RI to olefin and HI were analyzed in terms of the intersecting parabolas model (IPM). The activation energies (E) and rate constants (k) of the earlier unstudied reactions of the concerted molecular decomposition of RI were calculated on the basis of the enthalpy of the reaction and IPM algorithms. The factors that influence on E of RI decay were established: the enthalpy of the reaction, the energy of stabilization of radical R*, the length and force constant of the C—I bond, and the size of the halogen atom. The values of E and k for the backward reactions of HI addition to olefins were estimated.  相似文献   

18.
Kinetic and thermodynamic data for reaction (1) of certain C-centered aromatic radicals (referred to in this paper by the numbers I to X) in chlorobenzene: have been obtained. The k1 values of radicals varied between (1.1 ± 0.2) × 106M?1·sec?1 (radical VIII) and (3.6 ± 0.7) × 109M?1 sec?1 (radical VI) at 20°C. An investigation of the relationship between the recombination rates of radicals I–VIII and X and the solvent viscosity (mixture of toluene and dibutylphthalate, 0.6 < η < 18.4 cP) has shown that the recombination reactions involving radicals I–IV are limited by diffusion in solvents having a viscosity η> 10 cP and are activation reactions in solvents having a viscosity η < 10 cP. The recombination of radicals VIII and IX is an activation reaction, while that of radicals V–VII is diffusion-controlled in the entire viscosity range. The recombination of radical X is limited, in the viscosity range of 18.4 to 2 cP, by intrusion into the first coordination sphere of the partner, the effect of viscosity on the radical X recombination rate in the specified range being the same as its effect on diffusion-controlled reactions. The possible reasons of the discrepancies between the experimental fast recombination rate constants and the theoretical values calculated by the Debye–Smoluchowski theory are discussed. The equilibrium constant depends strongly on the nature of the substituent in the phenyl fragment: the substituents which increase unpaired electron delocalization in the radical intensify the dissociation of the respective dimer. Long-wave absorption bands have been recorded for radicals I–X and their extinction coefficients obtained. Dimers I–V are thermo- and photochromic compounds.  相似文献   

19.
The enthalpies of the addition of 11 alkyl radicals to ortho-and para-benzoquinones and substituted para-benzoquinones and the enthalpies of formation of various alkoxyphenoxyl radicals have been calculated. Experimental data for the addition of alkyl radicals to quinones are analyzed in terms of the intersection of two parabolic potential curves, and parameters characterizing this class of reactions are calculated. The classical potential barrier of the thermally neutral reaction of alkyl radical addition to benzoquinone is E e,0 = 82.1 kJ/mol. This class of reactions is compared to other classes of free-radical addition reactions. The interaction between the electrons of the reaction center and the π electrons of the aromatic ring is a significant factor in the activation energy. Activation energies, rate constants, and the geometric parameters of the transition state have been calculated for 40 reactions of alkyl radical addition to quinones. Strong polar interaction has been revealed in the addition of polar macroradicals to quinones, and its contribution to the activation energy has been estimated. Kinetic parameters, activation energies, and rate constants have been calculated for the reverse reactions of alkoxyphenoxyl radical decomposition to quinone and alkyl. The competition between chain termination and propagation reactions in alkoxyphenol-inhibited hydrocarbon oxidation is discussed.  相似文献   

20.
Unimolecular dissociation of a neopentyl radical to isobutene and methyl radical is competitive with the neopentyl association with O2 ((3)Sigma(g)-) in thermal oxidative systems. Furthermore, both isobutene and the OH radical are important primary products from the reactions of neopentyl with O2. Consequently, the reactions of O2 with the 2-hydroxy-1,1-dimethylethyl and 2-hydroxy-2-methylpropyl radicals resulting from the OH addition to isobutene are important to understanding the oxidation of neopentane and other branched hydrocarbons. Reactions that correspond to the association of radical adducts with O2((3)Sigma(g)-) involve chemically activated peroxy intermediates, which can isomerize and react to form one of several products before stabilization. The above reaction systems were analyzed with ab initio and density functional calculations to evaluate the thermochemistry, reaction paths, and kinetics that are important in neopentyl radical oxidation. The stationary points of potential energy surfaces were analyzed based on the enthalpies calculated at the CBS-Q level. The entropies, S(degrees)298, and heat capacities, C(p)(T), (0 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号