首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
两轮自平衡小车被各种竞赛所喜爱,在很多大型比赛中都有涉及此方向的题目。阐述了基于飞思卡尔系列XS128单片机为核心控制器,配合陀螺仪、角度传感器实现两轮小车的自平衡。着重介绍了两轮自平衡小车的结构、平衡原理、控制算法,通过反复调试最终实现了小车的自平衡。  相似文献   

2.
对两轮自平衡机器人的运动平衡控制进行研究。通过搭建两轮自平衡机器人实验平台,采用Newton-uler法建立动力学模型以及针对机器人的运动控制、平衡控制和伺服控制设计相应的PID控制器。物理实验表明,机器人在外界冲击干扰和阶跃干扰的作用下,能够维持自身平衡同时可以执行相应的运动控制命令。结果表明,提出的两轮自平衡机器人运动平衡控制的方法是合理有效的。  相似文献   

3.
4.
程立敏 《科技信息》2012,(35):I0145-I0145,I0162
本文旨在研制二种自平衡同轴双轮自平衡小车。系统以姿态传感器(陀螺仪、加速度计)来检测侧身所处的俯仰状态和状态变化率,通过高速中央处理器计算出适当数据和指令后,驱动电动机产生前进或后退的加速度来达到车体前后平衡的效果。本文对系统用到的PID控制技术做了相应的研究,从理论上分析了变积分的PID控制技术的优势,并在系统的实际测试中获得了良好的效果。  相似文献   

5.
采用飞思卡尔单片机为控制核心,以陀螺仪、加速度计为传感器的姿态,感知系统调节运动姿态,提高两轮自平衡电动车的控制精度。该两轮自平衡电动车具有体型小巧、转弯灵活的特点,动力来源为蓄电池。  相似文献   

6.
在两轮自平衡小车启动暂态过程中,小车站立姿态调整过程缓慢,存在震荡性和抖动性问题.结合模糊PID控制算法和积分补偿方案,实现对小车左右轮输出的电压进行优化控制,使小车能在较短时间内快速修正到直立状态.模拟和实验结果均表明:采用模糊PID算法和积分补偿相结合的优化方案后,小车启动过程的姿态变化更加平滑,动态倾斜角度的测量更加精准,震荡明显减弱.在小车从初始倾斜角度-4°调整到平衡0°时,采用模糊PID算法能提高系统的测试性能,缩短系统的修正时间,减小震荡范围,震荡峰值从常规PID算法的2.2°降为0.5°,超调量从55%降为12.5%.该研究应用在两轮自平衡小车上,可以提高乘坐的舒适性,减少因长时间进行姿态修正而产生的电力消耗.  相似文献   

7.
季浚涛 《科技信息》2013,(34):252-253
本文分析和研究了两轮自平衡机器人的平衡控制,速度控制与方向控制等问题,并且加入超声波避障功能。针对两轮自平衡机器人的姿态控制建立数学模型和动力学方程进行分析,并讨论了相应的控制方法。整个系统采用飞思卡尔公司的MC9S12XS128单片机作为系统的主控芯片,负责对各项传感器的数据进行处理与运算,并显示与发送控制信息量,完成两轮自平衡机器人的姿态控制。  相似文献   

8.
针对两轮自平衡机器人系统,提出基于线性矩阵不等式的控制器设计方法。首先,采用状态空间模型对两轮自平衡机器人系统进行描述。然后,通过线性矩阵不等式进行控制器的设计,并通过Lyapunov函数证明该方法的有效性,分析了基于观测器的控制器存在条件。最后,通过仿真进一步验证了该控制方法的有效性。  相似文献   

9.
利用牛顿第二定律建立自平衡两轮电动车的系统动力学模型,对模型进行可控性及可观性校验.采用期望极点配置算法及线性二次型最优控制(LQR)算法设计两类自平衡控制器,并利用MATLAB进行仿真分析.结果表明,两种控制方法对自平衡两轮电动车的稳定性控制均有效,其中期望极点配置控制方法使系统的稳定性更好,具有较高的实际应用价值.  相似文献   

10.
为提高自平衡车姿态角测量精度,利用惯性传感器MPU6050及STM32微处理器,采用参数可调的自适应显性互补滤波算法,结合陀螺仪和加速度计数据分别进行高频和低频姿态估计,设计了自平衡车姿态角测量单元。系统在线测试结果表明,该检测单元设计简单,算法易于实现,姿态角的估计精度高,为自平衡控制的实现提供了保证。  相似文献   

11.
文章针对两轮自平衡车的平衡控制问题,提出一种新型滑模控制方法。该方法首先将平衡控制系统分解为摆角子系统和位移子系统,分别设计各子系统的快速终端滑模面,利用一个具有反正切函数形式的中间变量将位移子系统的控制目标嵌入到摆角子系统的控制目标中,从而用1个控制量实现了对2个子系统的有效控制,使其在有限时间内收敛至平衡点;考虑到滑模面系数对系统状态收敛速度的影响,采用模糊推理对系数进行调节,改善了动态响应速度,且从理论上证明了滑模面的稳定性。最后,针对所提出的方法进行仿真,仿真结果验证了该控制方法的有效性。  相似文献   

12.
为了设计新型、环保、便捷的智能代步工具,搭建了一款独轮自平衡电动车物理系统。利用拉格朗日方法建立了人车一体的动力学模型,并对系统进行了特性分析。设计了独轮车系统的比例微分(proportional-differential,PD)平衡控制器,并对独轮车系统分别进行了自平衡、冲击干扰和阶跃干扰实验。实验结果表明,独轮自平衡电动车系统具有较好的鲁棒性和操控性,证明设计方案的合理性和有效性。  相似文献   

13.
针对多变量、强耦合、高度不稳定,非线性的两轮平衡小车控制问题进行了研究,采用双闭环PID控制算法对小车进行了控制。角度环采用PD控制算法,速度环采用PI控制算法,速度环弥补了角度环控制的不足。系统利用超声波检测回来的小车与物体的距离,通过区间判断来叠加或减小一个固定值控制PWM脉冲的占空比,增加系统的响应速度。搭建了两轮平衡小车样机,通过系统的软硬件设计、调试及运行情况,验证了双闭环PID控制算法的有效性,实现了小车稳定平衡控制。  相似文献   

14.
两轮自平衡车结合了两轮同轴、独立驱动、悬架结构和倒立摆模型的自平衡原理,是一种在微处理器控制下始终保持平衡的新型代步工具。设计了一款基于MK60DN512ZVLQ10的智能小车系统,在无人控制的情况下,有效地控制两轮小车的运动速度,实现了两轮小车自平衡、自动变速、自动避障、自动停车、翻越坡道等功能,并沿着赛道实现自动循迹。  相似文献   

15.
为解决3D打印制造的两轮自平衡机器人模型多样化的运动控制问题,研究一种针对非特定模型的自平衡机器人的运动控制策略。结果表明:所提出策略基于模糊自适应的控制理论,可在非人为参数调整的工况下,对于非特定模型的自平衡机器人的多种运动情景,进行快速准确的参数自调节和实时稳定的运动控制。可见,本文策略能够较好地解决3D打印制造的两轮自平衡机器人的模型多样化的自适应运动控制问题。  相似文献   

16.
介绍了一种基于线阵CCD两轮自平衡的智能车循迹系统。基于第八届飞思卡尔智能车大赛准则,该系统以飞思卡尔16位单片机MC9S12XS128作为核心控制器,以CCD作为路径识别装置检测路径信息,通过陀螺仪与加速度计测量智能车姿态,单片机获得传感器采集的路面信息及智能车姿态信息,经过分析后控制智能车的舵机转向,同时对直流电机进行调速,从而实现智能车自平衡和速度调节。在控制算法上采用模糊设定速度和PID调整速度相结合的算法,使智能车能够在自平衡状态下快速平稳的行驶。  相似文献   

17.
针对两轮自平衡机器人高阶次、不稳定、多变量、非线性、强耦合的特点,以其为研究对象,采用Lagrange方法建立状态方程,并对其平衡控制进行了研究,采用STM32单片机设计了控制系统进行验证,以寻求最优的系统动态性能,提高系统稳定性和鲁棒性。根据机器人俯仰角度和速度等输入参数,采用 PID算法输出 PWM 占空比可变的脉冲对驱动电机进行控制。仿真实验证明,本方法具有较好的动态性能和快速性。通过实际测试,证明了本方法的有效性。
  相似文献   

18.
针对某越野特种运载平台大幅度侧倾及俯仰运动下机动性提升问题,提出了一种基于双轴陀螺原理的自平衡任务舱系统结构设计方案以及基于该结构的控制方法。首先,采用Creo软件完成自平衡任务舱系统的结构建模,结合路面模型及行驶系统在ADAMS/View中搭建运动模型,将任务舱三维模型分解映射为体现侧倾和俯仰动力学的2个平面,形成侧倾和俯仰动力学数学模型,设计实时修正任务舱姿态的自平衡控制策略;其次,综合考虑不同类型路面对任务舱姿态的影响,设计基于载荷转移率的控制阈值算法,明确自平衡控制算法的工作区间;最后,在MATLAB/Simulink环境中搭建Simulink-ADAMS自平衡控制联合仿真模型,进行多种工况的虚拟试验来验证控制系统的有效性。结果表明,自平衡控制系统能够有效、实时地修正任务舱的侧倾角和俯仰角,降低越野特种运载平台侧倾及俯仰运动对于驾驶人员的影响程度。采用自平衡任务舱系统,突破了悬架的系统性能限制,提高了越野特种运载平台对恶劣越野路面的适应能力,为自平衡控制算法的仿真验证提供了模型基础。  相似文献   

19.
林忠海 《太原科技》2013,(2):90-92,94
将倒立摆的工作原理应用在两轮自平衡小车中,使小车保持自平衡运行。采用STC12C5A60S2单片机为核心控制器,利用MMA7361加速度传感器、EN-03陀螺仪感知的小车运动状态,采用PI控制算法,实现了以单片机内置的PCA/PWM模块输出的PWM驱动L298芯片控制电机正反转和速度,使车体保持平衡运动。  相似文献   

20.
针对小型两轮自平衡机器人姿态检测所用低成本加速度计(MMA7361)数据不够准确及陀螺仪(ENC03)信号的漂移问题,分别采用互补滤波器、kalamn滤波器和自适应kalman滤波器进行数据融合处理方法研究,通过对比实验确定采用自适应kalman滤波器实现加速度计和陀螺仪检测数据的融合,从而确定小型两轮自平衡机器人的姿态,进而实现其运动平衡控制.物理实验结果表明基于自适应kalman滤波器的加速度计和陀螺仪检测数据融合姿态检测方法不仅适用于小型两轮自平衡机器人的运动平衡控制,而且其参数较先前普遍采用的kalamn滤波器更易调整,姿态检测结果更加可靠.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号