首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of azide (N 3 ) ion, at pH 5.3 with [RuIII(EDTA) (H2O)] (EDTA = ethylenediaminetetraacetate) was studied in aqueous solution by polarography and cyclic voltammetry. The product, [RuIII(EDTA)(N3)]2− showed a multi-electron reduction step, which is polarographically reversible but, cyclic voltammetrically irreversible, in the potential range − 0.1 to − 0.2 V vs SCE. This reduction step, which was different from the one-electron reduction step of [RuIII(EDTA)(H2O)]; (E1/2 = −0.113V vs SCE) was assigned to the reduction of the coordinated azide ion to ammonia by the irreversible transfer of electrons from Hg-electrode via ruthenium metal. Azide, at pH 5.3, was reduced, electrolytically, for the first time, to ammonia at Hg-pool cathode mediated by [RuIII(EDTA) (N3)]2−. The turnover number with respect to the formation of ammonia (moles of ammonia per mole of ruthenium per hour) was obtained from the constant potential electrolysis data. On the basis of experimental observations, a probable mechanism has been proposed for the electrocatalytic reduction of azide to ammonia in aqueous solution.  相似文献   

2.
 This article gives an overview of recent chemistry based on the tris-acetonitrile complex [RuCp(CH3CN)3]+. Due to the labile nature of the CH3CN ligands, substitution reactions are a dominant feature of this complex. Important derivatives are the highly reactive complexes [RuCp(PR 3)(CH3CN)2]+ which are a source of the 14e fragment [RuCp(PR 3)]+. These species are catalytically active in the redox isomerization of allyl alcohols to give aldehydes and ketones. Furthermore, the cationic complex [RuCp1(P),η2-PPh2CH2CH2CH*CH2)(CH3CN)]PF6 derived from the reaction of [RuCp(CH3CN)3]+ with PPh2CH2CH2CH*CH2 is a model compound for studying coupling reactions of olefins and acetylenes. In addition, [RuCp(CH3CN)3]+ is a valuable precursor for the synthesis of configurationally stable chiral three-legged piano-stool ruthenium complexes. These are currently being intensively investigated as Lewis acid catalysts in asymmetric synthesis.  相似文献   

3.
The formation of formic acid in the low-temperature condensation of CO2−H2 and CO−H2O gas mixtures dissociated in electric discharge was investigated. The gas-phase concentrations of H., O., OH., and O2 were measured downstream a microwave discharge in a CO2−H2 mixture. Low-temperature (77 K) condensates formed from CO2−H2 and CO−H2O mixtures were studied by ESR. The formation of formic acid in the CO2−H2 and CO−H2O systems was found to be due to the reactions of H., CO, O., and O2 on the condensate surface. A single mechanism of the formation of formic acid in the CO2−H2 and CO−H2O systems was proposed.  相似文献   

4.
Summary.  This article gives an overview of recent chemistry based on the tris-acetonitrile complex [RuCp(CH3CN)3]+. Due to the labile nature of the CH3CN ligands, substitution reactions are a dominant feature of this complex. Important derivatives are the highly reactive complexes [RuCp(PR 3)(CH3CN)2]+ which are a source of the 14e fragment [RuCp(PR 3)]+. These species are catalytically active in the redox isomerization of allyl alcohols to give aldehydes and ketones. Furthermore, the cationic complex [RuCp1(P),η2-PPh2CH2CH2CH*CH2)(CH3CN)]PF6 derived from the reaction of [RuCp(CH3CN)3]+ with PPh2CH2CH2CH*CH2 is a model compound for studying coupling reactions of olefins and acetylenes. In addition, [RuCp(CH3CN)3]+ is a valuable precursor for the synthesis of configurationally stable chiral three-legged piano-stool ruthenium complexes. These are currently being intensively investigated as Lewis acid catalysts in asymmetric synthesis. Received May 31, 2000. Accepted June 13, 2000  相似文献   

5.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

6.
The electrochemical reduction of CO2 with a Cu electrode in methanol was investigated with sodium hydroxide supporting salt. A divided H-type cell was employed; the supporting electrolytes were 80 mmol dm−3 sodium hydroxide in methanol (catholyte) and 300 mmol dm−3 potassium hydroxide in methanol (anolyte). The main products from CO2 were methane, ethylene, carbon monoxide, and formic acid. The maximum current efficiency for hydrocarbons (methane and ethylene) was 80.6%, at −4.0 V vs Ag/AgCl, saturated KCl. The ratio of current efficiency for methane/ethylene, r f(CH4)/r f(C2H4), was similar to those obtained in LiOH/methanol-based electrolyte and larger relative to those in methanol using KOH, RbOH, and CsOH supporting salts. In NaOH/methanol-based electrolyte, the efficiency of hydrogen formation, a competing reaction of CO2 reduction, was suppressed to below 4%. The electrochemical CO2 reduction to methane may be able to proceed efficiently in a hydrophilic environment near the electrode surface provided by sodium cation.  相似文献   

7.
A polyoxometalate of the Keggin structure substituted with RuIII, 6Q5[RuIII(H2O)SiW11O39] in which 6Q=(C6H13)4N+, catalyzed the photoreduction of CO2 to CO with tertiary amines, preferentially Et3N, as reducing agents. A study of the coordination of CO2 to 6Q5[RuIII(H2O)SiW11O39] showed that 1) upon addition of CO2 the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (gx=2.146, gy=2.100, and gz=1.935), and 3) the 13C NMR spectrum had a broadened peak of bound CO2 at 105.78 ppm (Δ1/2=122 Hz). It was concluded that CO2 coordinates to the RuIII active site in both the presence and absence of Et3N to yield 6Q5[RuIII(CO2)SiW11O39]. Electrochemical measurements showed the reduction of RuIII to RuII in 6Q5[RuIII(CO2)SiW11O39] at ?0.31 V versus SCE, but no such reduction was observed for 6Q5[RuIII(H2O)SiW11O39]. DFT‐calculated geometries optimized at the M06/PC1//PBE/AUG‐PC1//PBE/PC1‐DF level of theory showed that CO2 is preferably coordinated in a side‐on manner to RuIII in the polyoxometalate through formation of a Ru? O bond, further stabilized by the interaction of the electrophilic carbon atom of CO2 to an oxygen atom of the polyoxometalate. The end‐on CO2 bonding to RuIII is energetically less favorable but CO2 is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp2 hybridization state. Formation of a O2C–NMe3 zwitterion, in turn, causes bending of CO2 and enhances the carbon sp2 hybridization. The synergetic effect of these two interactions stabilizes both Ru–O and C–N interactions and probably determines the promotional effect of an amine on the activation of CO2 by [RuIII(H2O)SiW11O39]5?. Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO2 and Et3N. A mechanistic pathway for photoreduction of CO2 is suggested based on the experimental and computed results.  相似文献   

8.
Kinetics of the OH-initiated reactions of acetic acid and its deuterated isomers have been investigated performing simulation chamber experiments at T = 300 ± 2 K. The following rate constant values have been obtained (± 1σ, in cm3 molecule−1 s−1): k 1(CH3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, k 2(CH3C(O)OD + OH) = (1.5 ± 0.3) × 10−13, k 3(CD3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, and k 4(CD3C(O)OD + OH) = (0.90 ± 0.1) × 10−13. This study presents the first data on k 2(CH3C(O)OD + OH). Glyoxylic acid has been detected among the products confirming the fate of the CH2C(O)OH radical as suggested by recent theoretical studies.  相似文献   

9.
A ruthenium‐based biomimetic hydrogen cluster, [Ru2(CO)6(μ‐SCH2CH2CH2S)] ( 1 ), has been synthesized and, in the presence of the P ligand tri(o‐tolyl)phosphine, demonstrated efficient photocatalytic hydrogen generation from formic acid decomposition. Turnover frequencies (TOFs) of 5500 h?1 and turnover numbers (TONs) over 24 700 were obtained with less than 50 ppm of the catalyst, thus representing the highest TOFs for ruthenium complexes as well as the best efficiency for photocatalytic hydrogen production from formic acid. Moreover, 1 showed high stability with no significant degradation of the photocatalyst observed after prolonged photoirradiation at 90 °C.  相似文献   

10.
A kinetic-potentiometric method is described for the quantitative assay of formaldehyde (HCHO) in pharmaceutical and industrial preparations. It is based on the reaction of HCHO with (ethylenediamine)-Cu(II)-sulfate [Cu(CH2NH2)2(H2O)2] · SO4. The changes in potential, resulting from the release of the Cu(II) cations, are monitored with a Cu(II)-ion selective electrode. The calibration curve for the HCHO is linear in the concentration range 50–250 mg L−1, with a limit of detection of 8.5 mg L−1. The method shows very good reproducibility with an RSD of 2.6% for successive injections (n = 5) of 150 mg L−1 HCHO primary solution, while it is interference free. The method was successfully tested in various industrial and pharmaceutical preparations.  相似文献   

11.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The polymetallic [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl](PF6)2 complex (bpy = 2,2′-bipyridine, BPE = trans-1,2-bis(4-pyridil)ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru3O] moiety with a [Ru(bpy)2(BPE)Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl]2+ doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)2(BPE)] charge-transfer bands and to the [Ru3O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at −1.07 V, 0.13 V, 1.17 V, 2.91 V and −1.29 V (vs SHE) assigned to the [Ru3O]−1/0/+1/+2/+3 and to the bpy0/−1 redox processes; also a wave is observed at 0.96 V, assigned to the Ru+2/+3 pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the π-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.  相似文献   

13.
Hydrated (undecomposed) form of heteropolyacid H3PMo12O40/SiO2 exhibits a higher activity in the formic acid decomposition than the corresponding dehydrated sample. The formic acid decomposition takes place on strong Br?nsted acid sites of the heteropolyacid.Ab initio SCF MO LCAO method was used for the calculation of the electronic state of two surface complexes of HCOOH molecule (S1 and S2) coordinated to a proton H+. The S1 complex is formed by proton addition to the carbonyl oxygen, whereas the S2 complex is formed proton addition to the oxygen atom of the C−O−H fragment of HCOOH. The selective weakening of the C−O bond and localization of the positive charge on the (O=C−H) fragment in the protonated complex S2 are favorable for the decomposition of formic acid to CO and H2O.  相似文献   

14.
Polymeric complexes of ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands [Ru2{O2C(CH2)mCH3}4(L)] n (m = 0, 4–7; L = OCN, SCN, and SeCN) were prepared and characterized based on the elemental analyses, IR, and diffuse reflectance spectra. Magnetic susceptibilities were measured at the temperature range of 4.5 K to 300 K, where the interdimer antiferromagnetic interactions were revealed. The strongest interaction was exhibited in case of m = 7 and L = OCN. 1H-NMR spectra of [Ru{O2C(CH2)7CH3}4(SCN)] n in CD2Cl2 showed broad signals which can be ascribed to polymeric species, as the addition of tetrabutylammonium thiocyanate caused sharper signals due to the formation of [Ru2{O2C(CH2)7CH3}4(SCN)2] adduct as the main species in the solution. Dedicated to Professor Milan Melník on the occasion of his 70th birthday  相似文献   

15.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

16.
Two new heterotrinuclear FeIII-MII-FeIII oxalate-bridged complexes have been prepared, and characterized, namely MII[(ox)FeIII(Salen)]2, [Salen = N,N′-ethylenebis(salicylideneiminate), ox = oxalate, M = Cu (1) and VO (2)]. Based on elemental analysis, conductivity measurements and i.r. spectra, the complexes are proposed to have an oxalate-bridged structure. The magnetic susceptibilities of the complexes were measured over the 4.2–300 K range, giving the exchange integrals J AB = −4.23 cm−1, J AA = −2.47 cm−1 for (1) and J AB = −5.42 cm−1, J AA = −1.55 cm−1 for (2). These results revealed the operation of an antiferromagnetic spin-exchange interaction between the metal ions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The interaction of BSA and FeIII complexes ([FeIII(gly)(H2O)4]2+, [FeIII(ida)(H2O)3]+, and [FeIII(nta)(H2O)2], gly—glyane, ida—iminodiacetic acid, nta—triglycolamic acid) as well as the sonocatalytic damage to BSA was studied by UV-vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time and FeIII complex concentration were also examined on the sonocatalytic damage to BSA. The results showed that the fluorescence quenching of BSA solution caused by the FeIII complexes belonged to the static quenching process. The BSA and FeIII complexes interacted with each other mainly through weak interaction and coordinate actions. The binding association constants (K) and binding site numbers (n) were calculated. The results were as follows: K 1 = 0.5353 × 104 l mol−1 and n 1 = 0.9812 for [FeIII(gly)(H2O)4]2+, K 2 = 1.4285 × 104 l mol−1 and n 2 = 1.0899 for [FeIII(ida)(H2O)3, and K 3 = 0.4411 × 104 l mol−1 and n 3 = 0.9471 for [FeIII(nta)(H2O)2]. Otherwise, under ultrasonic irradiation the BSA were obviously damaged by the FeIII complexes. The damage degree rose up with the increase of ultrasonic irradiation time and FeIII complex concentration. And that, [FeIII(nta)(H2O)2] exhibited in a way higher sonocatalytic activity than [FeIII(gly)(H2O)4]2+ and [FeIII(ida)(H2O)3]+.  相似文献   

18.
Summary.  The complexes RuTp(cod)X (X = Br (2), I (3), CN (4)) have been obtained by the reaction of RuTp(cod)Cl (1) with KX in boiling MeOH in high yields. The cationic complexes [RuTp(cod)(py)]+ (5), [RuTp(cod)(dmso)]+ (6), and [RuTp(cod)(CH3CN)]+ (7) were prepared as the CF3SO3 salts by reacting 1 with 1 equivalent of AgCF3SO3 in the presence of the respective co-ligand in CH2Cl2. The crystal structures of 1, 3, 4, 5, 6, and 7 are reported. Structural features are discussed in conjunction with 1H, 13C, and 15N NMR spectroscopic data revealing a linear correlation of 15N chemical shifts and Ru-N (trans to X(L)) bond distances. Received August 31, 2000. Accepted (revised) October 23, 2000  相似文献   

19.
Summary The complex [RuII(hedta)(4NH2pym)], hedta3− = N-hydroxyethylethylenediaminetriacetate, 4NH2pym = 4-aminopyrimidine, exists at pH 7 as five different coordination isomers, which are most readily distinguished by their electrochemical waves in comparison with the 2-aminopyridine (2NH2py) complex. The 2NH2py complex exhibits N(1) (pyridine bound), exo-NH2 (amine bound) and N(1), NH2-chelated species. The 4NH2pym complex forms N(1), exo-amine and N(3), NH2-chelated isomers analogues to the 2NH2py species, but also engages in η2 (olefin bound) coordination of the dearomatized 4NH2pym ring in C(5)–C(6), and another η2 type of complex involving electron density between N(1) and N(3) of the ring (η3 form). N(1), η2 and η3 isomers have also been detected for unsubstituted pyrimidine (pym), 4-methylprimidine (4CH3pym) and 2-aminopyrimidine (2NH2pym). Electrochemical waves (V versus NHE) for the five isomers are assigned as follows: (RuII/III) exo-NH2 (0.06 V), N(1) (0.29 V), η2 (0.49 V); (RuII/III) η3 (0.76 V); N(3), NH2-chelated (1.09 V).  相似文献   

20.
The oxidation of [RuIII(hedta)(H2O)]=(1) to its RuIV monomeric complex at a glassy carbon electrode is abserved to promote oxidation of alcohols bearing an a-hydrogen (i-PrOH benzyl alcohol,sec-phenethyl alcohol). Tertiary substitution blocks the oxidation (t-BuOH). The oxidation of the alcohols is detected by an enhancement in the current of the RuIV/III waves at potentials above 0.96V, caused by scavenging (reduction) of RuIV by the alcohols. Binuclear complexes which possess RuIV bridged by oxo to either a second RuIV or to RuIII in species of composition [LRuORuL]n−, L=hedta3−, fail to oxidize the alcohols. The terminal oxo moiety attached to RuIV is postulated to facilitate the oxidation of primary and secondary alcohols in a manner analogous to Meyer's [RuO(trpy)(bpy)]2+ catalyst. The dissociation of the (III,IV) binuclear complex into its monomers provides a pathway which increases catalytic activity at the expense of the inactive (III, IV) binuclear complex's concentration. TMC 2531  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号