首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The resistance of random copolymers of BMA and CMB against biofouling was evaluated. The amount of proteins adsorbed onto the CMB copolymers was smaller than that onto other polymers (non-ionic polymers and copolymers of ordinary ionic monomers and BMA) and decreased with an increase in the content of CMB residues. Furthermore, there was a dramatic decrease in the number of cells (platelets and fibroblasts) that adhered to the CMB copolymers compared with that to other polymers. In contrast with this, CMB copolymers were slightly perturbative to both complement and coagulation systems. However, the overall results suggest that zwitterionic moieties are effective for making polymer materials biocompatible due to their excellent anti-biofouling property.  相似文献   

2.
Varroa jacobsoni is a parasitic mite that is threatening the honeybee industry in many parts of the world. 2‐Heptanone, a natural product made by honeybees at low concentrations, is effective at elevated concentrations in controlling mite populations in honeybee colonies, especially when released over a 42 day period. An extrusion process was used to encapsulate 14, 18, and 25% 2‐heptanone in a polycaprolactone (PCL) matrix. Less than 18% of the 2‐heptanone was encapsulated in the PCL matrix. The high vapor permeability of PCL to 2‐heptanone resulted in a high flux rate and limited the usefulness of PCL as an encapsulation matrix for controlled‐release devices. A starch gel containing three times its weight in 2‐heptanone was prepared from starch‐based microcellular foam (MCF). The gel had compressive, tensile, and flexural strength values in the range of 0.56 to 1.9 MPa. 2‐Heptanone quickly evaporated from non‐laminated gels. However, when the gel was laminated with different polymeric films, a wide range of flux rates was obtained. The T50 for gels laminated or coated with poly(vinyl alcohol) (PVAL, 99% hydrolyzed) and ethylene‐vinyl alcohol copolymer (EVAL) was 72 and 1030 days, respectively. The most promising film was a starch/glycerol film that released 50% of the 2‐heptanone (T50) in approximately 13 days. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of RGD peptide conjugation to alginate hydrogel on the adipogenic differentiation of ASCs was investigated. After 3 d of culture, RGD-modified alginate hydrogels significantly stimulated FAK and integrin α1 gene expressions and vinculin expression in ASCs. In addition, RGD-modified alginate hydrogels significantly enhanced the adipogenic differentiation of human ASCs to exhibit higher expression levels of oil red O staining and adipogenic genes compared to those of the control group (unmodified gels). These results suggest potential applications of RGD-modified alginate gels for adipose tissue regeneration.  相似文献   

4.
The effect of doping P3OT with ferric chloride on the attachment and proliferation of MC3T3‐E1 osteoblasts is reported. Cell density and area correlated strongly with doping concentration: cells were larger and exhibited better spreading as doping increased. Cells cultured on undoped P3OT showed a decrease in proliferation between 24 and 48 h followed by a recovery after 72 h. However, this trend diminished with increasing doping concentration, and disappeared completely at the highest dopant level investigated. Analysis of cell‐cell spatial distributions suggested that contact inhibition of proliferation occurred similarly on both undoped and doped P3OT. From these results, FeCl3‐doping had no significant deleterious effect on attachment or proliferation of osteoblasts in vitro.

  相似文献   


5.
Ran F  Nie S  Li J  Su B  Sun S  Zhao C 《Macromolecular bioscience》2012,12(1):116-125
A heparin‐like structured macromolecule (HLSM) is synthesized by RAFT polymerization using carboxyl‐terminated trithiocarbonate as the RAFT agent. The HLSM can be directly blended with PES in DMAC to prepare flat‐sheet membrane by means of a liquid–liquid phase separation technique. The synthesized polymeric material retard blood clotting and the modified membrane exhibits good anticoagulant ability due to the existence of the important functional groups ? SO3H, ? COOH and ? OH. The anionic groups on the membrane surface may bind coagulation factors and thus improve anticoagulant ability. The results indicate that the HLSM has potential to improve the anticoagulant properties of biomaterials and to be applied in blood purification including hemodialysis and bioartificial liver supports.

  相似文献   


6.
The objective of this study was to evaluate the attachment, proliferation, and differentiation of rat mesenchymal stem cells (MSC) toward the osteoblastic phenotype seeded on polypyrrole (PPy) thin films made by admicellar polymerization. Three different concentrations of pyrrole (Py) monomer (20, 35, and 50 x 10(-3) M) were used with the PPy films deposited on tissue culture polystyrene dishes (TCP). Regular TCP dishes and PPy polymerized on TCP by chemical polymerization without surfactant using 5 x 10(-3) M Py, were used as controls. Rat MSC were seeded on these surfaces and cultured for up to 20 d in osteogenic media. Surface topography was characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and static contact angle. Cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium content were measured to evaluate the ability of MSC to adhere and differentiate on PPy-coated TCP. Increased monomer concentrations resulted in PPy films of increased thickness and surface roughness. PPy films generated by different monomer concentrations induced drastically different cellular events. A wide spectrum of cell attachment characteristics (from excellent cell attachment to the complete inability to adhere) were obtained by varying the monomer concentration from 20 m to 50 x 10(-3) M. In particular the 20 x 10(-3) M PPy thin films demonstrated superior induction of MSC osteogenicity, which was comparable to standard TCP dishes, unlike PPy films of similar thickness prepared by chemical polymerization without surfactant. Adhesion of mesenchymal stem cells on tissue culture plates (TCP) coated with polypyrrole thin films made by admicellar polymerization.  相似文献   

7.
We present herein a mild and rapid method for the modular functionalization of polysaccharides. Several ene‐functional charged and neutral polysaccharides, that is, hyaluronic acid and dextran, were prepared by esterification of the hydroxyl groups with pentenoic anhydride. The modified polysaccharides were then reacted with six model mercaptans under UV light, leading to linear polymers modified with hydrophobic groups, peptides, or oligosaccharides as well as chemical hydrogels. The thiol‐ene coupling reactions were found to proceed with high efficiency in short reaction times and with nearly no degradation of the polysaccharide backbone. Moreover, they were carried out in aqueous media, without the use of any metal catalysts, enhancing the attractive nature of this process. Notably, we investigated whether it is feasible to prepare cell‐responsive hydrogels by sequential bioconjugation and cross‐linking of the polysaccharide backbone with a bioactive peptide and poly(ethylene glycol)‐dithiol, respectively. All together, these results highlight the potential of this coupling strategy for the modular functionalization of polysaccharides under click chemistry‐like conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.  相似文献   

9.
PPy is a conducting polymer material that has been widely investigated for biomedical applications. hESCs and adult rNSCs were grown on four PPy surfaces doped with PSS or peptide from laminin (p20, p31, and a mixture of p20 and p31) respectively. After 7 d, both PPy/p20 and PPy/p31 promoted neuroectoderm formation from hESCs. After 14 d of culture, surfaces containing p20 showed the highest percentage of neuronal differentiation from hESC, while the PPy/p31 surface showed better cell attachment and spreading. In rNSCs cultures, a higher percentage of neurons were found on the PPy/p20 surface than other surfaces at 7 and 14 d. For differentiated neurons, p20 promoted both the primary and total neurite outgrowth. Longer primary neurites were found on p20-containing surfaces and a longer total neurite length was found on PPy/p20 surface. These results demonstrated that, by doping PPy with different bioactive peptides, differentiation of stem cells seeded at different stages of development is affected.  相似文献   

10.
A polycarbosilane having lactose‐derived structures was synthesized, and its thermal property, cytotoxicity, chemical crosslinking, and protein adsorption properties were investigated. The polycarbosilane (PSB‐Lac) was prepared by a thiol‐ene reaction between precursor poly(1‐(3‐butenyl)‐1‐methylsilacyclubane) (PSB) and heptaacetyl lactose that carried a thiol group at the anomeric position, and the successive deprotection of the acetyl groups. The lactose introduction efficiency determined by 1H NMR measurement was 75%. TGA and DSC revealed that the polymer had a 5 wt% decomposition temperature of 260 °C and glass transition temperature (Tg) of 84 °C, which indicated that PSB‐Lac was a thermally stable polymer. PSB‐Lac had no significant cytotoxicity, which was evaluated by human liver cancer cell line HepG2 cultivation on the polystyrene dishes coated with the polymer. Urethane‐crosslinked PSB‐Lac films were prepared by casting solutions of PSB‐Lac and hexamethylene diisocyanate and heating at 120 °C after evaporation of the solvent. The crosslinked PSB‐Lac showed higher adsorption of bovine serum albumin than the similarly crosslinked polycarbosilane that had a glucose structure (PSB‐Glc). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2420–2425  相似文献   

11.
Antimicrobial polymers have been widely reported to exert strong biocidal effects against bacteria. In contrast with antimicrobial polymers with aliphatic ammonium groups, polymers with anilinium groups have been rarely studied and applied as biocidal materials. In this study, a representative polymer with aniline side functional groups, poly(N,N‐dimethylaminophenylene methacrylamide) (PDMAPMA), was explored as a novel antimicrobial polymer. PDMAPMA was synthesized and its physicochemical properties evaluated. The methyl iodide‐quaternized polymer was tested against the Gram‐positive Staphylococcus aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 16–32 and 64–128 μg mL?1, respectively. Against the Gram‐negative Escherichia coli, the MIC and MBC were both 64–128 μg mL?1. To broaden the range of applications, PDMAPMA was coated on substrates via crosslinking to endow the surface with contact‐kill functionality. The effect of charge density of the coatings on the antimicrobial behavior was then investigated, and stronger biocidal performance was observed for films with higher charge density. This study of the biocidal behavior of PDMAPMA both in solution and as coatings is expected to broaden the application of polymers containing aniline side groups and provide more information on the antimicrobial behavior of such materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1908–1921  相似文献   

12.
New methods are needed to modify silk biomaterials with bioactive molecules for tissue engineering and drug delivery. In the present study, silk fibroin in solution or in microsphere format was coupled with NeutrAvidin via carbodiimide chemistry. Silk fibroin retained its self‐assembly features after reaction. It was found that more than four NeutrAvidin molecules bound to one silk molecule. Non‐specific binding of biotin or NeutrAvidin to silk microspheres could be reduced by pre‐treatment of the microspheres with BSA or post‐treatment with detergent. The NeutrAvidin‐coupled silk microspheres were coupled with biotinylated anti‐CD3 antibody and the functionalized microspheres were able to specifically bind to the CD3 positive T‐lymphocytic cell line Jurkat.

  相似文献   


13.
Cationic polymers have received much attention as promising nonviral vectors for gene transfer. However, development of polymers with low cell toxicities and high transfection efficiencies continue to be a significant problem and a major hurdle to their success. Poly‐D /L aspartate‐diethylenetriamine poly(D /L Asp‐DET) polymers were synthesized and evaluated as nonviral gene delivery agents. Poly(D /L Asp‐DET) polymers display endosome buffering capacity. The polymers condense plasmid DNA above N:P ratios of 1 and form polyplex particles of ~50–100 nm, with zeta potentials between neutral and +40 mV. Transmission electron microscopy shows the polyplexes to be uniform in size and shape. Polyplexes maintain the structural integrity of DNA following incubation in nucleases and also show high transfection efficiencies with minimal toxicity in both HCT‐116 and PC‐3 cell culture. However, it is found that these poly(D /L Asp‐DET)/DNA polyplexes immediately aggregate in salt and serum conditions, making them unsuitable for use in vivo. Therefore, the polyplexes were further modified by covalent addition of polyethylene glycol (PEG). Introduction of this second step produces PEG‐polyplexes of uniform size (below 100 nm), with neutral zeta potentials that are also stable in both salt and serum conditions. These results suggest poly(D /L Asp‐DET) cationic polymers as potentially safe and efficient nonviral gene delivery agents. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The use of natural compounds in the preparation of new materials can improve the biocompatibility of the materials and avoid any potential toxicity of the degradation products when used for biomedical applications. Bile acids are amphiphilic molecules biosynthesized in the liver. They are used to prepare various polymers and oligomers. These polymers made of bile acids are promising materials in both biomedical and pharmaceutical fields.  相似文献   

15.
An elastin-mimetic polypeptide, (EMM)(7), with the amino-acid sequence GRDPSS [VPGVG VPGKG VPGVG VPGVG VPGEG VPGIG](7) was used for chemical conjugation of various integrin ligands (RGD peptides) to prepare bioactive hydrogels. The chemical approach involved (1) chemical protection of lysine residues with Fmoc or Boc groups, (2) chemical ligation of a protected linear or cyclic RGD ligand, with or without a hexanoic-acid spacer to the glutamic acid residue, (3) deprotection of the lysine functionalities and the RGD moieties and (4) cross-linking to form a bioactive hydrogel. (1)H NMR spectroscopy was used to quantify the multiple steps in the reaction. The chemical protection was found to be between 65 and 93% for Fmoc and Boc, respectively. The ligands studied included linear RGD cell-binding [H-FGRGDS-OH (1-l-RGD), H-Ahx--FGRGDS-OH (2-Ahx-FGRGDS) and a cyclic -H(2)N-(CH(2))(6)COHN-cyclo(-RGDfK-) (H-Ahx-c(-RGDfK-)) peptide also with a hexanoic-acid spacer. Cell adhesion with mouse osteoblast cells was dependent on the ligand type, ligand density and the use of a spacer.  相似文献   

16.
17.
基于胆酸的功能性分子的研究进展   总被引:1,自引:0,他引:1  
胆酸是存在于人和动物体内的天然分子,由胆固醇在肝脏中合成.其结构上具有亲水的一面和憎水的一面,以其作为结构单元可以合成各种各样的功能性分子.这些分子因其独特的物理化学特性,被广泛应用到化学、生物医学等领域.本文回顾了近几年来国内外研究人员以胆酸为结构单元合成的高分子和低聚物及这些分子在生物医用材料方面的应用.  相似文献   

18.
Electrospinning has been exploited for almost one century to process polymers and related materials into nanofibers with controllable compositions, diameters, porosities, and porous structures for a variety of applications. Owing to its high porosity and large surface area, a non‐woven mat of electrospun nanofibers can serve as an ideal scaffold to mimic the extracellular matrix for cell attachment and nutrient transportation. The nanofiber itself can also be functionalized through encapsulation or attachment of bioactive species such as extracellular matrix proteins, enzymes, and growth factors. In addition, the nanofibers can be further assembled into a variety of arrays or architectures by manipulating their alignment, stacking, or folding. All these attributes make electrospinning a powerful tool for generating nanostructured materials for a range of biomedical applications that include controlled release, drug delivery, and tissue engineering.

  相似文献   


19.
These studies provide evidence for the ability of a commercially available, defined, hyaluronan‐gelatin hydrogel, HyStem‐C?, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem‐C? hydrogels and mouse embryonic fibroblasts and Matrigel?, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages. The addition of fibronectin to HyStem‐C? enabled the attachment of hiPSCs in a xeno‐free, fully defined medium.

  相似文献   


20.
Summary: N-isopropylacrylamide (NIPAAm)/butylacrylate (BAc) copolymer was synthesized by emulsion polymerization in order to use it as a cell culture surface for corneal epithelium biosubstitutes. Results showed that the obtained polymers were thermosensitive hydrogels. The copolymer was characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and swelling degree. 3T3 Swiss cells were used as feeder layers and they were used to test the cytotoxic effect of the hydrogels. The conditions to isolate, cultivate, expand and cryo-preserve human oral mucosal cells were established and analysis of several morphological and immuno-histochemical characteristics of the cultivated oral mucous were made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号