共查询到16条相似文献,搜索用时 89 毫秒
1.
基于高光谱图像的玉米种子特征提取与识别 总被引:6,自引:2,他引:6
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法. 相似文献
2.
3.
高光谱图像包含了大量的光谱信息和图像信息,采用高光谱成像技术对牛肉品种进行识别。获取可见-近红外(400~1000 nm)光谱范围内的安格斯牛、利木赞牛、秦川牛、西门塔尔牛、荷斯坦奶牛五个品种共252个牛肉样本的高光谱图像。在ENVI软件中对高光谱图像进行阈值分割并构建掩膜图像,获取样本的感兴趣区域(ROI),并结合伪彩色图对牛肉样本的反射率指数进行可视化表达;采用Kennard-Stone(KS)法对样本集进行划分以提高模型的预测性能;对原始光谱采用卷积平滑(SG)、区域归一化(Area normalize)、基线校正(Baseline)、一阶导数(FD)、标准正态变量变换(SNV)及多元散射校正(MSC)等6种方法进行预处理;采用竞争性自适应重加权算法(CARS)提取特征波长。然后利用颜色矩对不同牛肉样本的颜色特征进行提取;对原始光谱图像进行主成分分析,结合灰度共生矩阵(GLCM)算法,提取主要纹理特征。最后结合偏最小二乘判别(PLS-DA)算法建立牛肉样本基于特征波长、颜色特征以及纹理特征的识别模型。KS法将牛肉样本划分为校正集190个,预测集62个;将未经预处理的光谱数据与经过6种不用预处理的光谱数据进行建模分析,结果发现经FD法处理后的光谱数据所建模型的识别率最高;结合CARS法对经FD法预处理后的光谱数据进行特征波长提取,共提取出22个波长;利用颜色矩和GLCM算法分别提取出每个牛肉样本的9个颜色特征、48个纹理特征。将特征波长数据与颜色、纹理特征信息进行融合建模,结果表明,基于特征光谱+纹理特征的模型识别效果最佳,其校正集与预测集识别率分别为98.42%和93.55%,均高于特征光谱数据模型识别率,说明融合纹理特征后使样本分类信息的表达更加全面;融合颜色特征后模型的校正集识别率均有所增加,但预测集识别率稍逊,颜色特征虽携带了部分有效信息,但这些信息与牛肉样本的相关性不大。因此,寻找与牛肉样本相关性更大的颜色特征是提高模型识别率的重要途径之一。该研究结果为牛肉品种的快速无损识别提供了一定的参考。 相似文献
4.
基于高光谱图像技术和SVDD的玉米种子识别 总被引:1,自引:0,他引:1
特征提取的充分性和分类器设计的合理性是影响玉米种子识别精度的两个关键问题。采集了玉米种子的高光谱图像,并提取每粒玉米种子在不同波段下的图像熵作为分类特征;在此基础上,利用支持向量数据描述方法构建每类玉米的分类器模型,对待识别样本的测试精度达到了94.14%,对新类别样本的识别精度达到92.28%。仿真结果表明:新方法可实现玉米种子的准确识别,同时解决了传统分类器对新类别样本的错误分类问题。 相似文献
5.
基于高光谱成像技术的稻谷品种鉴别研究 总被引:1,自引:0,他引:1
许多不同的稻谷品种看起来很相似,但它们的化学成分和最终产品质量却有很大差别,每年因品种混淆而造成巨大的经济损失,对稻谷品种的鉴别是发展优质粮食工程的现实需要,为此提出了一种采用高光谱成像技术实现稻谷品种无损快速鉴别的方法。主要研究内容和结果如下:(1)在全波段388~1 000 nm范围内采集5个品种共150粒的稻谷高光谱反射率数据,筛选出差异明显的波段(600~800 nm),将此波段内每个品种的反射率进行Stacked计算和curve-smoothing平滑处理以增加其区分度。(2)对5种稻谷经平滑处理后的反射率数据做主成分分析,找到权值系数最大的波长位于680 nm,将其作为特征波长。加载特征波长下的纹理图像,计算每粒稻谷样品的纹理特征参数:均值(Mean)、方差(Variance)、信息熵(Entropy)和偏差(Skewness)。利用阈值分割的方法将目标与背景区分开,计算每粒稻谷形态特征参数:面积像素数/pixels2、边界的周长/pixels、长轴长度/pixels、短轴长度/pixels。结合稻谷的纹理特征参数和形态特征参数,比较Fisher判别分析模型、偏最小二乘回归模型(PLSR)和人工神经网络模型(ANN)对稻谷品种鉴别的效果。(3)结果显示,Fisher判别分析中函数1和函数2的累计方差贡献率达到93%,能够较好地解释稻谷的品种信息。将样本的函数值与组质心的平方马氏距离(Mahalanobis)做比较,值相近的作为同一分组类别,对稻谷品种的整体识别正确率能达到95.3%;偏最小二成回归模型:Y品种=0.03X均值-0.36X方差-0.24X信息熵+0.37X偏差+0.31X面积-0.32X周长-0.39X长轴长度+0.45X短轴长度,该回归模型相关系数r=0.98,校正均方根RMESS=0.29,交叉验证均方根PMESSCV=0.32,对稻谷的品种鉴别正确率能达到95%;构建的ANN模型为具有sigmoid隐含和softmax输出神经元的双层前馈网络,对150个样品按70%∶15%∶15%的比例随机划分训练集、测试集、验证集,选择共轭梯度法(scaled conjugate gradient)作为训练算法,以交叉熵(cross-entropy)作为模型的评价指标,对稻谷品种鉴别的正确率可达到98%。稻谷品种鉴别的ANN模型在分类精度上优于Fisher判别和PLSR,选择特征波长下的图像信息建立稻谷品种识别的ANN模型,对稻谷品种的无损快速鉴别具有重要指导意义。 相似文献
6.
基于高光谱图像和判别分析的草地早熟禾品种识别研究 总被引:1,自引:0,他引:1
利用高光谱成像技术(550~1 000nm),采集了6个草地早熟禾品种新鲜叶片的高光谱图像,提取了叶片的光谱信息,运用Wilks’Lambda逐步判别分析法,从94个波段中选择了9个特征波段,根据特征波段的光谱信息,采用Fisher线性判别法,构建草地早熟禾品种的判别分析模型。结果表明,选择3个、6个和9个波段组合,对120个训练样本的识别正确率分别为98.3%,100%和100%,对60个测试样本的识别正确率分别为83.3%,96.7%和100%,说明以9个特征波段的光谱信息构建的草地早熟禾品种判别模型是合适的,利用高光谱成像技术结合判别分析法,为快速识别草地早熟禾品种提供了一种新的方法。 相似文献
7.
为了使用快速、无损的方法区分激光打印文件使用的墨粉种类,利用高光谱成像技术结合化学计量法对6种激光打印墨粉的光谱数据进行建模和种类鉴别的研究。利用可见-近红外高光谱成像仪采集400~1 000 nm波段内的光谱数据,采用Savitzky Golay平滑、标准化、多元散射校正和标准正态变量变换4种方法分别对光谱数据进行预处理,而后分别建立随机森林(RF)、K最近邻(KNN)、支持向量机(SVM)、偏最小二乘判别分析(PLS-DA)和簇类独立软模式(SIMCA)模型,进而实现激光打印墨粉的种类鉴别。利用准确率、拒识率和误识率3个指标作为模型评价标准。实验结果显示,SVM和PLS-DA模型的效果最佳,准确率为100%,拒识率和误识率为0。基于可见-近红外高光谱成像技术可以实现激光打印墨粉的快速种类鉴别。 相似文献
8.
9.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
10.
高光谱图像技术是在种子识别领域广泛应用的农产品品质无损检测方法。特征信息的充分提取和最优波段的选择是影响高光谱图像技术种子鉴选在线应用的关键因素。目的在于利用联合偏度算法选择高光谱图像的最优波段,用于开发在线的种子分级系统。论文利用高光谱图像采集系统获取10类共960粒玉米种子在438~1 000 nm(共219个波段)波段范围内的高光谱图像,并提取了种子高光谱图像的平均光谱、图像熵特征。利用联合偏度算法选择了高光谱图像的最优波段,分别建立了基于平均光谱、图像熵、平均光谱和图像熵联合特征条件下的支持向量机种子分类模型,比较不同特征下分类模型的识别精度。实验结果表明:无论是全波段分类模型,还是建立在最优波段基础上的分类模型,利用平均光谱和图像熵联合特征获得的分类精度均高于平均光谱和图像熵两种单一特征模型。在10个最优波段条件下,联合特征分类模型的识别精度达到了96.28%,比光谱均值和图像熵的识别精度分别提高了4.30%和20.38%,也高于全波段联合特征识别模型的93.47%。利用联合特征建立玉米种子分类模型时,基于联合偏度的波段选择算法的分类精度要高于无信息变量消除法、连续投影算法和竞争性自适应重加权算法。该研究为种子高光谱图像识别技术的在线运用提供了可行的途径。 相似文献
11.
基于高光谱图像技术的玉米杂交种纯度鉴定方法探索 总被引:2,自引:0,他引:2
对玉米种子高光谱图像的光谱维信息进行分析,探索利用高光谱图像技术鉴定玉米杂交种纯度的可行性。实验中利用高光谱成像系统采集玉米品种农华101的母本和杂交种的高光谱图像, 波长范围871~1699 nm;在每个玉米样本上提取感兴趣区域的平均光谱信息,利用处理后的数据建立农华101母本和杂交种的鉴定模型。讨论了样品的摆放方式(种子胚正对光源和背对光源,种子在样品台上的位置)和实验环境对鉴定模型性能的影响。鉴定模型对不同摆放方式和实验环境下获得的同种样品的光谱的正确识别率和正确拒识率均达到90%以上,模型稳健性良好。利用Qs方法选择特征波段[1],发现在1 230 nm附近(1 195~1 246 nm)农华101的母本和杂交种差异最大。实验中利用特征波段内的数据进行建模和测试,正确识别率和正确拒识率达到90%以上,与利用全波段(925~1597 nm)获得的识别效果相当。分析结果表明,利用高光谱图像技术鉴定玉米杂交种纯度是可行的。 相似文献
12.
可见近红外高光谱成像对灵武长枣定量损伤等级判别 总被引:1,自引:0,他引:1
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测.采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像.提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值.利用光谱-理化值共生距离算法(SPX... 相似文献
13.
14.
国内三文鱼市场鱼龙混杂,假冒问题严重,但鉴别方法有限。采用红外光谱技术结合偏最小二乘判别分析法(PLS-DA)研究了黑龙江大马哈鱼、淡水虹鳟、智利太平洋鲑三种鱼肉对挪威三文鱼的冒充问题。采用FITR光谱仪和KBr压片法采集四种肉类的原始光谱,并对原始光谱分别进行多元散射校正(MSC)、Savitzky-Golay平滑、一阶导数(first derivative)、标准正则变换(SNV)、峰面积归一化(peak area normalization)五种预处理来消除噪声等干扰因素并确定最佳预处理方法。为建立PLS-DA鉴别模型,将四种鱼肉的光谱分别赋予-3,-1,1和3四个参考分值,建模后通过预测检测集鱼肉得分来检验模型准确性。结果表明:采用峰面积归一化法时,PLS-DA检测模型的效果最好,校正集和交叉验证集的决定系数分别为0.97和0.95。RMSEC和RMSECV分别为0.37和0.52。该模型能显著区分四种鱼肉、检测集的预测分值分别聚集在各自的参考分值附近,在阈值为±1的判别条件下预测准确度为96%。同时采用马氏距离法进一步对四种鱼肉的光谱进行分析,发现相互之间差异明显,其中挪威三文鱼与其品种差别最大的淡水虹鳟距离最大,与其比较接近的智利太平洋鲑的距离最小,红外光谱信息能够反映不同鱼肉的品种、生活环境等差异。因此,采用红外光谱技术结合PLS-DA法能够准确的鉴别出其他鱼肉对挪威三文鱼的冒充问题,同时对其他肉类检测有一定借鉴意义。 相似文献
15.
高光谱参数和逐步判别的苎麻品种识别 总被引:2,自引:0,他引:2
为了探讨基于高光谱的苎麻品种识别和分类的方法,在大田栽培条件下,采集了4个不同基因型苎麻品种共927个叶片高光谱数据。根据苎麻叶片高光谱反射曲线,选择了2组特征参数: 基于高光谱波形峰谷反射率和位置参数(V1组)、基于偏度和峰度参数(V2组)。运用逐步判别的方法,通过设置不同F值筛选不同个数的变量,分别建立基于2组特征参数的多个Fisher线性判别函数,并从计算量、正确率和稳定性三方面对所建立的判别函数进行分析比较。结论: (1)所有组合的判别函数总体平均正确率为91.1%,标准差总体均值为1.2%;(2)综合权衡,在所有组合中,V2组且14≥变量个数n≥8判别效果最好--计算量中等,正确率和稳定性均高于平均值,其中,13个变量的Fisher判定函数平均正确率最高有94.2%,标准差最低为0%;(3)若优先考虑正确率,V1组且22≥变量个数≥15正确率最高,平均正确率最大有95.5%,但计算量比较大,稳定性中等,标准差最低为0.9%。研究表明,利用高光谱参数结合逐步判别方法识别苎麻品种是可行的。 相似文献
16.
白茎绢蒿是一种广泛分布于新疆富蕴县各个矿区的一种植物。在矿区进行矿产勘查时,由于植物等障碍信息的存在,传统的勘查方法已经难以发挥作用,急需一些新方法、新思路。遥感植物地球化学方法可以巧妙地利用植物这一天然的信息源,把植物从障碍信息转换为了有用信息。帮助人们快速、经济地获取植物屏障下的矿产有用信息。由于其具有大面积、快速、无损性等优点,受到了越来越多学者的关注,成为当下的研究热点。近些年虽然有学者综合考虑“吸收系数”和“衬度系数”这两个指标,证明了白茎绢蒿是对隐伏矿床的勘查具有较好指示性作用的植物,生在在矿床上部的植物可以较好的吸收土壤中的成矿元素,在其体内形成地球化学异常,相比于其他植物异常信息更加清晰可见。但是目前没有人研究是否可以从光谱的角度来发现白茎绢蒿体内的地球化学异常,进而为隐伏矿床的勘查提供参考。因此,本研究首次尝试从白茎绢蒿的光谱信息中寻找出与地球化学异常密切相关的特征波段或者特征值, 然后构建基于植物光谱的隐伏矿床预测模型。采取的方法是首先利用ASD FieldSpec3 型光谱仪分别对生长在矿床上部和背景区的植物进行光谱测定,然后从原始光谱、一阶导数光谱、二阶导数光谱、一阶导数的分形维数、二阶导数的分形维数五个层面对生长在这两个区域的植物光谱进行对比分析,最终优选出了10个差异显著的特征波段,分别为:R′824,R′834,R′1 533,R′1 573,R′1 633,R′1 643,R″1 284,R″1 703,一阶导数的分形维数以及二阶导数的分形维数。这些特征波段可以作为植物地区寻找隐伏矿床的植物地球化学标志。以优选出的10个特征波段作为输入参数,分别用随机森林 (RF)和偏最小二乘-支持向量机(PLS-SVM)构建了基于植物光谱数据的隐伏矿床预测模型。结果表明:(1)两种模型均可以取得较好的效果,但是相比于随机森林模型,偏最小二乘-支持向量机模型具有更好的鲁棒性,泛化能力也更强;(2)利用植物的光谱异常寻找隐伏矿床具有较大的潜力,因为相比于传统方法,更加简单、快速。课题组已经利用动力三角翼和HySpex成像高光谱传感器构建了“超低空探测平台”,可以实现对地“亚米级”的观测。但是如何有效的解决“空间尺度”和“光谱尺度”问题,如何把地面试验场建立的模型更好的应用于超低空探测平台,实现研究区大面积地、快速地植物异常信息提取将是我们下一步的研究重点。 相似文献