共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
针对因正常和高甘油三脂血清荧光光谱混叠致使其识别率不高的问题,首先测量了正常和高甘油三脂血清样品在260,370,580 nm激发光下产生的荧光光谱,并以荧光强度作为样品的初始特征;其次,采用主成分分析法对初始特征进行分析和提取,获得了样品的特征向量;最后,构建了4层概率神经网络,并对正常和高甘油三脂血清样品进行了识别。对采用不同荧光光谱进行血清样品识别的效果进行了对比,结果表明,采用260 nm和370 nm荧光光谱识别正常和高甘油三脂血清的正确率分别为100%和95%。实验验证了研究方案的可行性和效果,对发展荧光光谱技术在识别高甘油三脂血症中的应用具有重要的意义和价值。 相似文献
3.
基于支持向量机的非线性荧光光谱的识别 总被引:4,自引:4,他引:4
提出将支持向量机网络应用于含不同浓度杂质气体的非线性荧光光谱的识别。由于原始光谱数据的光谱通道数目很大,首先用小波变换去噪压缩,然后采用主成分分析方法对光谱信息进行连续两次的特征提取。在保持原光谱数据主要信息基本不变的情况下,将数据维数由3979压缩到514(小波变换)并提取9个主成分。这样,不仅减少了网络的输入维数,而且加快了网络的训练速度。实验结果表明,无论对训练样本还是未学习过的测试样本,其正确识别率均可达到100%。网络的训练和测试速度较快,可以更有效地应用于大气杂质气体的实时监测。 相似文献
4.
基于PCA和ICA的多光谱数据降维方法 总被引:2,自引:0,他引:2
提出了一种结合主成分分析(PCA)和独立成分分析(ICA)的多光谱数据降维方法,实现了用低维基向量的线性组合来表示高维的光谱数据。首先用PCA方法对多光谱数据进行重构,为了提高色度精度,重建中引入了物体的色度信息;然后用ICA方法对因引入色度信息所造成的剩余光谱误差进行修正。从实验结果来看,所提出的方法均方根误差的平均值较PCA法降低了34.48%,GFC的平均值也达到了95%以上,其降维精度优于基于PCA的光谱降维方法。 相似文献
5.
基于PCA和SVM的高光谱遥感图像分类研究 总被引:4,自引:0,他引:4
支持向量机(SVM)是根据统计学习理论提出的新的研究方法,它在解决小样本、非线性及高维模式识别问题中表现出了许多特有的优势,在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。由于高光谱图像波段数目多,各波段间具有较强的相关性,因此通过主成分分析(PCA)方法对高光谱数据进行预处理,达到了降维的目的,同时也去除了噪声波段。用支持向量机方法对高光谱遥感图像进行分类,可实现图像的分类识别。 相似文献
6.
将赤潮藻生长过程中产生的荧光溶解有机物(fluorescent dissolved organic matter,FDOM)的三维荧光光谱与主成分分析相结合,尝试建立了我国沿海10种常见赤潮藻的识别测定技术.用主成分分析提取三维荧光光谱第一主成分载荷谱作为识别特征谱,建立了浮游植物荧光特征谱库,在此基础上利用Bayes... 相似文献
7.
基于PCA的土壤Cd含量高光谱反演模型对比研究 总被引:4,自引:0,他引:4
土壤重金属污染对人类健康造成了极大的威胁,如何快速摸清土壤污染情况尤为重要.高光谱遥感具备光谱分辨率高,快速无损等优势,使其在土壤组分反演方面具有巨大的潜力.针对高光谱信息冗余及光谱变换对土壤镉(Cd)含量估算的影响进行分析,并利用变换前后的高光谱数据对比研究了不同高光谱模型对土壤Cd含量反演的性能.首先利用等离子体质... 相似文献
8.
实际观测天体目标光谱如超新星和活动星系核光谱常常混有寄主星系成分,这对目标天体光谱的类别和性质证认识别会造成困难。文章提出了一种快速有效的称为二元PCA特征谱分解的星系扣除算法。该算法首先计算了星系样本模板库和超新星样本模板库各自的PCA特征光谱,然后对特征光谱组通过正交变换得到混合空间的一组标准正交基,进而利用混合光谱在该标准正交基上的分解系数计算该光谱在原特征光谱组的分解系数,获得星系超新星混合光谱的快速分解,系数计算也可通过SVD矩阵分解得到,但计算效率较低。实验表明,该方法优于常用的直接PCA投影重构分解方法,与另一种χ2模板拟合方法扣除星系成分相比,在保持分解效果基本不变的前提下,时间消耗则大大降低,从而使该方法可应用到大规模光谱数据处理中。 相似文献
9.
活体浮游植物同步荧光光谱特征分析研究 总被引:1,自引:2,他引:1
测量了东海五种常见浮游植物在3个温度(25,20,15 ℃)、3个光照(7 000,4 100,1 100 Lx)下的不同生长期的同步扫描荧光光谱,对其进行了多项式平滑和归一化处理,考察了同种藻的光谱相似性,并运用主成分分析确立了其标准谱。分析结果表明,中肋骨条藻(Skeletonema costatuma, Sk)、等鞭金藻(Isochrysis galbana, Is)、岛国大扁藻(Platymonas helgolanidica, Pl)的特征光谱相似度高,塔玛亚历山大藻(Alexandrium tamarense)和裸甲藻(Gymnodinium stein)的光谱相似度稍差。实验所用的硅藻中肋骨条藻与甲藻塔玛亚历山大藻、裸甲藻的标准光谱明显不同。 相似文献
10.
基于RBF神经网络的较低浓度下同步荧光光谱的溢油鉴别 总被引:1,自引:0,他引:1
针对海面溢油样品的含量难以确定,同时考虑到海水掺杂及风化等问题的影响,提出了在较低非线性浓度范围内采集溢油嫌疑样品的同步荧光光谱,获取其训练样本集,利用主成分分析法(Principal com-ponent analysis,PCA)提取其特征光谱,结合径向基函数(Radial basis function,RBF)神经网络对肇事样本和嫌疑样本进行模式识别的方法。通过对相近油源原油样品分类识别研究表明:该方法仅需单次对肇事样本同步光谱测量,再借助数据分析,就可以很好区分相近油源溢油样品,外扰对识别率影响也不大。RBF神经网络算法识别率在92%左右。该结论对海洋环境中溢油的实时检测及油指纹数据信息库的建立有重要意义。 相似文献
11.
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 总被引:32,自引:17,他引:32
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 相似文献
12.
荧光光谱成像技术结合聚类分析及主成分分析的藻类鉴别研究 总被引:3,自引:0,他引:3
为探讨快速、实时藻类检测方法,实验通过荧光光谱成像技术结合模式识别方法对不同藻类进行鉴别研究。发现藻类样本存在着显著的荧光特性,通过采集40个藻类样品的荧光光谱图像,对图像进行去噪、二值化处理,确定有效像素后,根据光谱立方体绘制每个样本的光谱曲线,将所得400~720 nm区段范围内的光谱数据作鉴别分析,再利用系统聚类分析及主成分分析两种不同的模式识别法对光谱数据进行处理。系统聚类分析结果表明: 采用欧氏距离法及平均加权法计算样本间的聚类距离,在距离L=2.452以上水平处可将样本正确分类,准确率为100%;主成分分析结果表明: 通过对原始光谱数据进行一阶微分、二阶微分、多元散射校正、变量标准化等预处理后,再对数据进行主成分分析,其中二阶微分预处理后鉴别效果最佳,八种藻类样品在主成分特征空间中独立分布。因此,利用荧光光谱成像技术结合聚类分析法及主成分分析法对藻类进行鉴别是可行的,操作简便、快速、无损。 相似文献
13.
星系通常分为正常星系(NG)与活动星系(AG)两类。文章提出了一种自动获取NG红移的快速有效方法: (1) 由NG模板根据红移范围Ⅰ: 0.0~0.3与Ⅱ: 0.3~0.5模拟得到两类星系样本, 进行PCA变换获得样本特征向量; (2) 利用概率神经网络设计两类样本特征向量的Bayes分类器; (3) 对于实际NG光谱数据, 利用Bayes分类器进行分类确定其红移的范围, 然后在此范围内进行模板匹配得到红移的准确值。与在整个红移范围内的模板匹配方法相比, 此方法不但节省了50%的模板匹配运算量, 而且还大大提高了红移值测量的精度。文章研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。 相似文献
14.
为实现高效短程生物脱氮及氨氮和亚硝酸盐氮的快速检测,采用主成分分析结合BP神经网络的方法建立短程生物脱氮工艺中氨氮和亚硝酸盐氮的近红外光谱定量分析模型(BP神经网络模型)。工艺运行结果表明:原水经过好氧阶段氨氮从45.3 mg·L-1下降到2.7 mg·L-1,亚硝酸盐氮从0.01 mg·L-1上升到19.6 mg·L-1,硝酸盐氮受到抑制;在缺氧段亚硝酸盐氮从19.6 mg·L-1下降至1.2 mg·L-1,系统实现了良好的短程生物脱氮效果。水样原始光谱主成分分析表明:前13个主成分代表了原始光谱数据的信息,其累计贡献率达到95.04%,排除了冗余信息且大大降低了模型的维数,光谱数据矩阵从192×2 203减少到192×13,大大降低了运算量并提高了模型的精度。BP神经网络模型校正结果显示:BP神经网络模型对氨氮、亚硝酸盐氮校正时的决定系数(R2)分别达到0.950 4和0.976 2,校正均方根误差(RMSECV)分别为0.016 6和0.010 9。BP神经网络模型预测结果显示:BP神经网络模型对氨氮、亚硝酸盐氮预测输出与期望输出之间的决定系数(R2)分别为0.974 0和0.981 4,预测均方根误差(RMSEP)分别为0.033 7和0.028 7,模型预测效果良好。研究表明,BP神经网络模型可以通过快速测定水样的近红外光谱数据预测短程生物脱氮工艺中氨氮和亚硝酸盐氮浓度,并根据氨氮和亚硝酸盐氮浓度变化及时、灵活地控制工艺的运行,为生物脱氮提供快速有效的检测技术和科学依据。 相似文献
15.
利用主成分分析方法结合支持向量机建立了太赫兹时域光谱冰片种类鉴别模型。冰片是一些常用中成药的重要成分,由于其来源多、真假易混淆,在制药和交易环节,迫切需要快速、简便、准确的检测、鉴别方法。太赫兹时域光谱技术是利用太赫兹脉冲表征物质性质的一种新兴光谱技术。实验使用透射式太赫兹时域光谱系统分别获得了艾片、合成冰片和梅片三种冰片在0.2~2 THz之间的吸收谱线。通过主成分分析,做出了第一、第二主成分二维得分图以及第一、二、三主成分三维得分图,两者对三种不同种类冰片都具有很好的聚类效果。用前十个主成分的得分值矩阵代替原光谱数据,通过对三种冰片的60组样本训练,对未知的60组样本鉴别,建立了四种不同核函数的支持向量机模型。对比结果表明,径向基核函数构建的支持向量机对三种冰片的分类鉴别准确率均为100%,由此我们确定选择具有径向基核函数的支持向量机建立冰片种类的鉴别模型。此外,在含噪情况下,四种核函数SVM获得的总分类准确率都在85%以上,说明支持向量机具有很强的泛化能力。主成分分析结合支持向量机方法对冰片太赫兹光谱具有很好的分类和鉴别效果,为冰片等中成药剂的种类鉴别提供了一种新思路。 相似文献
16.
主成分提取在遥感FTIR谱图解析中的应用 总被引:1,自引:2,他引:1
建立了基于人工神经网络(ANN)的遥感FTIR谱图解析方法。针对人工神经网络(ANN)训练时间过长和模型“过拟合”的问题,采用偏最小二乘法(PLS)和主成分分析法(PCA),对输入ANN的光谱数据进行了主成分提取,使ANN分析时间从30多分钟缩短为10多秒钟;模型传递技术的引入,克服了遥感FTIR谱图分析中反复建模问题。经过优化的方法,实现了用EPA数据建模,对大气中的四组分混合体系——丙酮、苯、三氯甲烷和甲醇的遥感、实时、准确测定,PLS-ANN模型得到的结果最好,对丙酮、苯、三氯甲烷和甲醇的预测误差分别为0.043,0.031,0.034,0.051,保证了遥感FTIR对大气中有毒气体混合物实时、准确、快速监测。 相似文献
17.
多组分三维荧光重叠光谱是三维荧光光谱的数据解析中的难点之一。本文基于二维微分谱的计算原理, 充分利用三维荧光光谱具有激发光谱和发射光谱的特点, 获得了三维荧光光谱展开后的激发微分谱和发射微分谱. 之后利用独立成分分析对激发光谱或发射光谱的多组分混合微分谱分别进行解析, 得到了单一组分的激发微分谱和发射微分谱。其中三次样条插值有效的弥补了实测激发波长数据点少的缺点, 而粗糙惩罚平滑技术的引入则很大程度上减少了发射光谱的噪声,为微分谱的计算提供了有利的条件。单一组分的标准谱与解析谱的相似性系数的计算表明, 利用独立成分分析对微分谱进行解析更有利于多组分混合三维荧光光谱所含成分的识别。 相似文献
18.
装饰纸作为现代家居产品中必不可少的重要饰面材料之一,不仅具有良好的装饰效果,还可以大大地改善材料的表面性能。然而,装饰纸外观质量的控制(如色差的评价和控制),仍然是制约装饰纸产业发展的重要因素之一。利用人眼来判别和控制往往因人而异,偏主观而非客观。因此,寻找一种客观、有效的方法来代替人的视觉感官来快速判别具有重要意义。本研究利用可见光光谱结合主成分分析法对不同类别装饰纸进行了模式识别分类研究,探讨了该技术的可行性。结果表明:(1)可见光光谱与表征装饰纸表面视觉特性的参数之间呈现出显著的相关性,相关系数都达到了0.85以上,多数均达到0.99,说明可见光光谱中包含有描述装饰纸表面视觉特征的参数;(2)利用装饰纸表面的可见光光谱结合主成分分析方法所建立的模式识别模型,对不同装饰纸表面视觉特征类型进行模式识别时,正确率达到94%~100%,说明可见光光谱分析技术有潜力成为装饰纸表面视觉特征快速、客观、有效识别和分类的新技术。 相似文献