首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

2.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

3.
The synthesis and photophysical properties of several porphyrin (P)–phthalocyanine (Pc) conjugates (P–Pc; 1 – 3 ) are described, in which the phthalocyanines are directly linked to the β‐pyrrolic position of a meso‐tetraphenylporphyrin. Photoinduced energy‐ and electron‐transfer processes were studied through the preparation of H2P–ZnPc, ZnP–ZnPc, and PdP–ZnPc conjugates, and their assembly through metal coordination with two different pyridylfulleropyrrolidines ( 4 and 5 ). The resulting electron‐donor–acceptor hybrids, which were formed by axial coordination of compounds 4 and 5 with the corresponding phthalocyanines, mimicked the fundamental processes of photosynthesis; that is, light harvesting, the transduction of excited‐state energy, and unidirectional electron transfer. In particular, photophysical studies confirmed that intramolecular energy‐transfer resulted from the S2 excited state as well as from the S1 excited state of the porphyrins to the energetically lower‐lying phthalocyanines, followed by an intramolecular charge‐transfer to yield P–Pc.+ ? C60.?. This unique sequence of processes opens the way for solar‐energy‐conversion processes.  相似文献   

4.
A ruthenium complex, porphyrin sensitizer, fullerene acceptor molecular pentad has been synthesized and a long‐lived hole–electron pair was achieved in aqueous solution by photoinduced multistep electron transfer: Upon irradiation by visible light, the excited‐state of a zinc porphyrin (1ZnP*) was quenched by fullerene (C60) to afford a radical ion pair, 1,3(ZnP.+‐C60.−). This was followed by the subsequent electron transfer from a water oxidation catalyst unit (RuII) to ZnP.+ to give the long‐lived charge‐separated state, RuIII‐ZnP‐C60.−, with a lifetime of 14 μs. The ZnP worked as a visible‐light‐harvesting antenna, while the C60 acted as an excellent electron acceptor. As a consequence, visible‐light‐driven water oxidation by this integrated photosynthetic model compound was achieved in the presence of sacrificial oxidant and redox mediator.  相似文献   

5.
The two molecular triads 1a and 1b consisting of a porphyrin (P) covalently linked to a fullerene (C60) electron acceptor and tetrathiafulvalene (TTF) electron‐donor moiety were synthesized, and their photochemical properties were determined by transient absorption and emission techniques. Excitation of the free‐base‐porphyrin moiety of the TTF−P2 H−C60 triad 1a in tetrahydro‐2‐methylfuran solution yields the porphyrin first excited singlet state TTF−1P2 H−C60, which undergoes photoinduced electron transfer with a time constant of 25 ps to give TTF−P2 H.+−C60.−. This intermediate charge‐separated state has a lifetime of 230 ps, decaying mainly by a charge‐shift reaction to yield a final state, TTF.+−P2 H−C60.−. The final state has a lifetime of 660 ns, is formed with an overall yield of 92%, and preserves ca. 1.0 eV of the 1.9 eV inherent in the porphyrin excited state. Similar behavior is observed for the zinc analog 1b . The TTF‐PZn.+−C60.− state is formed by ultrafast electron transfer from the porphyrinatozinc excited singlet state with a time constant of 1.5 ps. The final TTF.+−PZn−C60.− state is generated with a yield of 16%, and also has a lifetime of 660 ns. Although charge recombination to yield a triplet has been observed in related donor‐acceptor systems, the TTF.+−P−C60.− states recombine to the ground state, because the molecule lacks low‐energy triplet states. This structural feature leads to a longer lifetime for the final charge‐separated state, during which the stored energy could be harvested for solar‐energy conversion or molecular optoelectronic applications.  相似文献   

6.
We show that the radical cations of adamantane (C10H16.+, 1 H.+) and perdeuteroadamantane (C10D16.+, 1 D.+) are stable species in the gas phase. The radical cation of adamantylideneadamantane (C20H28.+, 2 H.+) is also stable (as in solution). By using the natural 13C abundances of the ions, we determine the rate constants for the reversible isergonic single‐electron transfer (SET) processes involving the dyads 1 H.+/ 1 H, 1 D.+/ 1 D and 2 H.+/ 2 H. Rate constants for the reaction 1 H.++ 1 D? 1 H+ 1 D.+ are also determined and Marcus’ cross‐term equation is shown to hold in this case. The rate constants for the isergonic processes are extremely high, practically collision‐controlled. Ab initio computations of the electronic coupling (HDA) and the reorganization energy (λ) allow rationalization of the mechanism of the process and give insights into the possible role of intermediate complexes in the reaction mechanism.  相似文献   

7.
A novel photosynthetic‐antenna–reaction‐center model compound, comprised of BF2‐chelated dipyrromethene (BODIPY) as an energy‐harvesting antenna, zinc porphyrin (ZnP) as the primary electron donor, ferrocene (Fc) as a hole‐shifting agent, and phenylimidazole‐functionalized fulleropyrrolidine (C60Im) as an electron acceptor, has been synthesized and characterized. Optical absorption and emission, computational structure optimization, and cyclic voltammetry studies were systematically performed to establish the role of each entity in the multistep photochemical reactions. The energy‐level diagram established from optical and redox data helped identifying different photochemical events. Selective excitation of BODIPY resulted in efficient singlet energy transfer to the ZnP entity. Ultrafast electron transfer from the 1ZnP* (formed either as a result of singlet–singlet energy transfer or direct excitation) or 1C60* of the coordinated fullerene resulting into the formation of the Fc–(C60 . ?Im:ZnP . +)–BODIPY radical ion pair was witnessed by femtosecond transient absorption studies. Subsequent hole migration to the ferrocene entity resulted in the Fc+–(C60 . +Im:ZnP)–BODIPY radical ion pair that persisted for 7–15 μs, depending upon the solvent conditions and contributions from the triplet excited states of ZnP and ImC60, as revealed by the nanosecond transient spectral studies. Better utilization of light energy in generating the long‐lived charge‐separated state with the help of the present “antenna–reaction‐center” model system has been successfully demonstrated.  相似文献   

8.
A supramolecular assembly of zinc porphyrin? carbon nanohorns ( CNH s) was constructed in a polar solvent. An ammonium cation was covalently connected to the CNH through a spacer (sp) ( CNH ‐sp‐NH3+) and bound to a crown ether linked to a zinc porphyrin (Crown? ZnP). Nanohybrids CNH ‐sp‐NH3+;Crown? ZnP and CNH ‐sp‐NH3+ were characterized by several techniques, such as high‐resolution transmission electron microscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and Raman spectroscopy. The photoinduced electron‐transfer processes of the nanohybrids have been confirmed by using time‐resolved absorption and fluorescence measurements by combining the steady‐state spectral data. Fluorescence quenching of the ZnP unit by CNH ‐sp‐NH3+ has been observed, therefore, photoinduced charge separation through the excited singlet state of the ZnP unit is suggested for the hybrid material, CNH ‐sp‐NH3+;Crown? ZnP. As transient absorption spectral experiments reveal the formation of the radical cation of the ZnP unit, electron generation is suggested as a counterpart of the charge‐separation on the CNH s; such an electron on the CNH s is further confirmed by migrating to the hexylviologen dication (HV2+). Accumulation of the electron captured from HV.+ is observed as electron pooling in solution in the presence of a hole‐shifting reagent. Photovoltaic performance with moderate efficiency is confirmed for CNH‐ sp‐NH3+;Crown? ZnP deposited onto nanostructured SnO2 films.  相似文献   

9.
A molecular dyad and triad, comprised of a known photosensitizer, BF2‐chelated dipyrromethane (BDP), covalently linked to its structural analog and near‐IR emitting sensitizer, BF2‐chelated tetraarylazadipyrromethane (ADP), have been newly synthesized and the photoinduced energy and electron transfer were examined by femtosecond and nanosecond laser flash photolysis. The structural integrity of the newly synthesized compounds has been established by spectroscopic, electrochemical, and computational methods. The DFT calculations revealed a molecular‐clip‐type structure for the triad, in which the BDP and ADP entities are separated by about 14 Å with a dihedral angle between the fluorophores of around 70°. Differential pulse voltammetry studies have revealed the redox states, allowing estimation of the energies of the charge‐separated states. Such calculations revealed a charge separation from the singlet excited BDP (1BDP*) to ADP (BDP.+‐ADP.?) to be energetically favorable in nonpolar toluene and in polar benzonitrile. In addition, the excitation transfer from the singlet BDP to ADP is also envisioned due to good spectral overlap of the BDP emission and ADP absorption spectra. Femtosecond laser flash photolysis studies provided concrete evidence for the occurrence of energy transfer from 1BDP* to ADP (in benzonitrile and toluene) and electron transfer from BDP to 1ADP* (in benzonitrile, but not in toluene). The kinetic study of energy transfer was measured by monitoring the rise of the ADP emission and revealed fast energy transfer (ca. 1011 s?1) in these molecular systems. The kinetics of electron transfer via 1ADP*, measured by monitoring the decay of the singlet ADP at λ=820 nm, revealed a relatively fast charge‐separation process from BDP to 1ADP*. These findings suggest the potential of the examined ADP–BDP molecules to be efficient photosynthetic antenna and reaction center models.  相似文献   

10.
High oxidation potential perfluorinated zinc phthalocyanines (ZnFnPcs) are synthesised and their spectroscopic, redox, and light‐induced electron‐transfer properties investigated systematically by forming donor–acceptor dyads through metal–ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine‐ (Py) and phenylimidazole‐functionalised fullerene (C60Im) derivatives to the zinc centre of the FnPcs. The determined binding constants, K, in o‐dichlorobenzene for the 1:1 complexes are in the order of 104 to 105 M ?1; nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6‐31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnFnPc.+–C60Im.? and ZnFnPc.+–C60Py.? (n=0, 8 or 16) intra‐supramolecular charge‐separated states during electron transfer. Electrochemical studies on the ZnPc–C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge‐separated states. The energy of the charge‐separated state for dyads composed of ZnFnPc is higher than that of normal ZnPc–C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar‐energy harvesting and optoelectronic device building applications.  相似文献   

11.
A new artificial photosynthetic triad array, a [60]fullerene–triosmium cluster/zinc–porphyrin/boron–dipyrrin complex ( 1 , Os3C60/ZnP/Bodipy), has been prepared by decarbonylation of Os3(CO)8(CN(CH2)3Si(OEt)3)(μ3‐η222‐C60) ( 6 ) with Me3NO/MeCN and subsequent reaction with the isocyanide ligand CNZnP/Bodipy ( 5 ) containing zinc porphyrin (ZnP) and boron dipyrrin (Bodipy) moieties. Triad 1 has been characterized by various spectroscopic methods (MS, NMR, IR, UV/Vis, photoluminescence, and transient absorption spectroscopy). The electrochemical properties of 1 in chlorobenzene (CB) have been examined by cyclic voltammetry; the general feature of the cyclic voltammogram of 1 is nine reversible one‐electron redox couples, that is, the sum of those of 5 and 6 . DFT has been applied to study the molecular and electronic structures of 1 . On the basis of fluorescence‐lifetime measurements and transient absorption spectroscopic data, 1 undergoes an efficient energy transfer from Bodipy to ZnP and a fast electron transfer from ZnP to C60; the detailed kinetics involved in both events have been elucidated. The SAM of triad 1 ( 1 /ITO; ITO=indium–tin oxide) has been prepared by immersion of an ITO electrode in a CB solution of 1 and diazabicyclo‐octane (2:1 equiv), and characterized by UV/Vis absorption spectroscopy, water contact angle, X‐ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of 1 /ITO have been investigated by a standard three‐electrode system in the presence of an ascorbic acid sacrificial electron donor. The quantum yield of the photoelectrochemical cell has been estimated to be 29 % based on the number of photons absorbed by the chromophores. Our triad 1 is unique when compared to previously reported photoinduced electron‐transfer arrays, in that C60 is linked by π bonding with little perturbation of the C60 electron delocalization.  相似文献   

12.
Metalloradical species [Co2Fv(CO)4].+ ( 1 .+, Fv=fulvalenediyl) and [Co2Cp2(CO)4].+ ( 2 .+, Cp=η5‐C5H5), formed by one‐electron oxidations of piano‐stool cobalt carbonyl complexes, can be stabilized with weakly coordinating polyfluoroaluminate anions in the solid state. They feature a supported and an unsupported (i.e. unbridged) cobalt–cobalt three‐electron σ bond, respectively, each with a formal bond order of 0.5 (hemi‐bond). When Cp is replaced by bulkier Cp* (Cp*=η5‐C5Me5), an interchange between an unsupported radical [Co2Cp*2(CO)4].+ (anti‐ 3 .+) and a supported radical [Co2Cp*2(μ‐CO)2(CO)2].+ (trans‐ 3 .+) is observed in solution, which cocrystallize and exist in the crystal phase. 2 .+ and anti‐ 3 .+ are the first stable thus isolable examples that feature an unsupported metal–metal hemi‐bond, and the coexistence of anti‐ 3 .+ and trans‐ 3 .+ in one crystal is unprecedented in the field of dinuclear metalloradical chemistry. The work suggests that more stable metalloradicals of metal–metal hemi‐bonds may be accessible by using metal carbonyls together with large and weakly coordinating polyfluoroaluminate anions.  相似文献   

13.
The development of visible‐light‐active photocatalysts is being investigated through various approaches. In this study, C60‐based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water‐soluble fullerol (C60(OH)x) instead of C60, we demonstrate that the adsorbed fullerol activates TiO2 under visible‐light irradiation through the “surface–complex CT” mechanism, which is largely absent in the C60/TiO2 system. Although fullerene and its derivatives have often been utilized in TiO2‐based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible‐light sensitizer of TiO2 is not well established. Fullerol/TiO2 exhibits marked visible photocatalytic activity not only for the redox conversion of 4‐chlorophenol, I?, and CrVI, but also for H2 production. The photoelectrode of fullerol/TiO2 also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO2 and C60/TiO2, which confirms that the visible‐light‐induced electron transfer from fullerol to TiO2 is particularly enhanced. The surface complexation of fullerol/TiO2 induced a visible absorption band around 400–500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO2. The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol.+) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO2 cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO2 cluster) as the origin of the visible‐light absorption.  相似文献   

14.
A supramolecular triad composed of a fused zinc phthalocyanine-free-base porphyrin dyad (ZnPc-H2P) coordinated to phenylimidazole functionalized C60 via metal-ligand axial coordination was assembled, as a photosynthetic antenna-reaction centre mimic. The process of self-assembly resulting into the formation of C60Im:ZnPc-H2P supramolecular triad was probed by proton NMR, UV-Visible and fluorescence experiments at ambient temperature. The geometry and electronic structures were deduced from DFT calculations performed at the B3LYP/6-31G(dp) level. Electrochemical studies revealed ZnPc to be a better electron donor compared to H2P, and C60 to be the terminal electron acceptor. Fluorescence studies of the ZnPc-H2P dyad revealed excitation energy transfer from 1H2P* to ZnPc within the fused dyad and was confirmed by femtosecond transient absorption studies. Similar to that reported earlier for the fused ZnPc-ZnP dyad, the energy transfer rate constant, kENT was in the order of 1012 s−1 in the ZnPc-H2P dyad indicating an efficient process as a consequence of direct fusion of the two π-systems. In the presence of C60Im bound to ZnPc, photoinduced electron transfer leading to H2P-ZnPc.+:ImC60.− charge separated state was observed either by selective excitation of ZnPc or H2P. The latter excitation involved an energy transfer followed by electron transfer mechanism. Nanosecond transient absorption studies revealed that the lifetime of charge separated state persists for about 120 ns indicating charge stabilization in the triad.  相似文献   

15.
Cup‐shaped nanocarbons (CNC) generated by the electron‐transfer reduction of cup‐stacked carbon nanotubes have been functionalized with porphyrins (H2P) as light‐capturing chromophores. The resulting donor–acceptor nanohybrid has been characterized by thermogravimetric analysis (TGA), Raman and IR spectroscopy, transmission electron microscopy, elemental analysis, and UV/Vis spectroscopy. The weight of the porphyrins attached to the cup‐shaped nanocarbons was determined as 20 % by TGA and elemental analysis. The UV/Vis absorption spectrum of CNC? (H2P)n in DMF agrees well with that obtained by the superposition of reference porphyrin (ref‐H2P) and cup‐shaped nanocarbons. The photoexcitation of the CNC? (H2P)n nanohybrid results in formation of the charge‐separated (CS) state to attain the longest CS lifetime (0.64±0.01 ms) ever reported for donor–acceptor nanohybrids, which may arise from efficient electron migration following the charge separation. The formation of a radical ion pair was detected directly by electron spin resonance (ESR) measurements under photoirradiation of CNC? (H2P)n with a high‐pressure mercury lamp in frozen DMF at 153 K. The observed ESR signal at g=2.0044 agrees with that of ref‐H2P.+ produced by one‐electron oxidation with [Ru(bpy)3]3+ in deaerated CHCl3, indicating the formation of H2P.+. The electron‐acceptor ability of the reference CNC compound (ref‐CNC) was also examined by the electron‐transfer reduction of ref‐CNC by a series of semiquinone radical anions.  相似文献   

16.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

17.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   

18.
The locations of Brønsted acid sites (BAS) in the channels of medium‐pore zeolites have a significant effect on the spontaneous ionization of para‐terphenyl (PP3) insofar as spatial constraints determine the stability of transition states and charge‐transfer complexes relevant to charge separation. The ionization rates and ionization yield values demonstrate that a strong synergy exists between the H+ polarization energy and spatial constraints imposed by the channel topology. Spectroscopic and modeling results show that PP3 incorporation, charge separation, charge transfer and charge recombination differ dramatically among zeolites with respect to channel structure (H‐FER, H‐MFI, H‐MOR) and BAS density in the channel. Compartmentalization of ejected electrons away from the initial site of ionization decreases dramatically the propensity for charge recombination. The main mode of PP3.+ decay is hole transfer to form AlO4H.+ ??? PP3 charge‐transfer complexes characterized by intense absorption in the visible range. According to the nonadiabatic electron‐transfer theory, the small reorganization energy in constrained channels explains the slow hole‐transfer rate.  相似文献   

19.
Oligophenylenevinylene (OPV)‐terminated phenylenevinylene dendrons G1 – G4 with one, two, four, and eight “side‐arms”, respectively, were prepared and attached to C60 by a 1,3‐dipolar cycloaddition of azomethine ylides generated in situ from dendritic aldehydes and N‐methylglycine. The relative electronic absorption of the OPV moiety increases progressively along the fullerodendrimer family C60G1 – C60G4 , reaching a 99:1 ratio for C60G4 (antenna effect). UV/Vis and near‐IR luminescence and transient absorption spectroscopy was used to elucidate photoinduced energy and electron transfer in C60G1 – C60G4 as a function of OPV moiety size and solvent polarity (toluene, dichloromethane, benzonitrile), taking into account the fact that the free‐energy change for electron transfer is the same along the series owing to the invariability of the donor–acceptor couple. Regardless of solvent, all the fullerodendrimers exhibit ultrafast OPV→C60 singlet energy transfer. In CH2Cl2, the OPV→C60 electron transfer from the lowest fullerene singlet level (1C60*) is slightly exergonic (ΔGCS≈0.07 eV), but is observed, to an increasing extent, only in the largest systems C60G2 – C60G4 with lower activation barriers for electron transfer. This effect has been related to a decrease of the reorganization energy upon enlargement of the molecular architecture. Structural factors are also at the origin of an unprecedented OPV→C60 electron transfer observed for C60G3 and C60G4 in apolar toluene, whereas in benzonitrile, electron transfer occurs in all cases. Monitoring of the lowest fullerene triplet state by sensitized singlet oxygen luminescence and transient absorption spectroscopy shows that this level is populated through intersystem crossing and is not involved in photoinduced electron transfer.  相似文献   

20.
A panchromatic triad, consisting of benzothiazole (BTZ) and BF2-chelated boron-dipyrromethene (BODIPY) moieties covalently linked to a zinc porphyrin (ZnP) core, has been synthesized and systematically characterized by using 1H NMR spectroscopy, ESI-MS, UV-visible, steady-state fluorescence, electrochemical, and femtosecond transient absorption techniques. The absorption band of the triad, BTZ-BODIPY-ZnP, and dyads, BTZ-BODIPY and BODIPY-ZnP, along with the reference compounds BTZ-OMe, BODIPY-OMe, and ZnP-OMe exhibited characteristic bands corresponding to individual chromophores. Electrochemical measurements on BTZ-BODIPY-ZnP exhibited redox behavior similar to that of the reference compounds. Upon selective excitation of BTZ (≈290 nm) in the BTZ-BODIPY-ZnP triad, the fluorescence of the BTZ moiety is quenched, due to photoinduced energy transfer (PEnT) from 1BTZ* to the BODIPY moiety, followed by quenching of the BODIPY emission due to sequential PEnT from the 1BODIPY* moiety to ZnP, resulting in the appearance of the ZnP emission, indicating the occurrence of a two-step singlet–singlet energy transfer. Further, a supramolecular tetrad, BTZ-BODIPY-ZnP:ImC60, was formed by axially coordinating the triad with imidazole-appended fulleropyrrolidine (ImC60), and parallel steady-state measurements displayed the diminished emission of ZnP, which clearly indicated the occurrence of photoinduced electron transfer (PET) from 1ZnP* to ImC60. Finally, femtosecond transient absorption spectral studies provided evidence for the sequential occurrence of PEnT and PET events, namely, 1BTZ*-BODIPY-ZnP:ImC60→BTZ-1BODIPY*-ZnP:ImC60→BTZ-BODIPY-1ZnP*:ImC60→BTZ-BODIPY-ZnP.+:ImC60.− in the supramolecular tetrad. The evaluated rate of energy transfer, kEnT, was found to be 3–5×1010 s−1, which was slightly faster than that observed in the case of BODIPY-ZnP and BTZ-BODIPY-ZnP, lacking the coordinated ImC60. The rate constants for charge separation and recombination, kCS and kCR, respectively, calculated by monitoring the rise and decay of C60.− were found to be 5.5×1010 and 4.4×108 s−1, respectively, for the BODIPY-ZnP:ImC60 triad, and 3.1×1010 and 4.9×108 s−1, respectively, for the BTZ-BODIPY-ZnP:ImC60 tetrad. Initial excitation of the tetrad, promoting two-step energy transfer and a final electron-transfer event, has been successfully demonstrated in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号