首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isomeric products (C8H10N2O4S) of the rearrangement of 3‐methane­sulfonyl‐N‐methyl‐N‐nitro­aniline have been investigated, viz. 3‐methane­sulfonyl‐N‐methyl‐2‐nitro­aniline, which was the main product of the rearrangement, and 5‐methane­sulfonyl‐N‐methyl‐2‐nitro­aniline. In both mol­ecules, the aromatic rings are appreciably deformed towards ortho‐quinonoidal geometry by electronic and steric interactions. The crystal structure is stabilized, in both cases, by weak C—H⋯O hydrogen bonds.  相似文献   

2.
RhII‐catalyzed intermolecular [3+2] cycloaddition of 2 H‐azirines with N‐sulfonyl‐1,2,3‐triazoles is disclosed, in which a series of fully functionalized pyrroles is produced via rhodium azavinyl carbene intermediates. A distinct feature of this reaction is that the azavinyl carbene serves as a [2 C] equivalent, instead of as [1 C] or aza‐[3 C] synthons, which have been reported previously in cyclopropanations and [3+n] cycloadditions. Moreover, this methodology has also been successfully applied in the total synthesis of URB447 as well as the formal synthesis of Atorvastatin (Lipitor).  相似文献   

3.
An efficient proline‐catalyzed synthesis of 4,5‐disubstituted‐N‐sulfonyl‐1,2,3‐triazoles has been accomplished from 1,3‐dicarbonyl compounds and sulfonyl azides. The developed reaction is suitable for various symmetrical and unsymmetrical 1,3‐dicarbonyl compounds, tolerates various functional groups and affords 4,5‐disubstituted‐N‐sulfonyl‐1,2,3‐triazoles in good yield with excellent regioselectivity. Rhodium‐catalyzed denitrogenative functionalization of 4,5‐disubstituted‐N‐sulfonyl‐1,2,3‐triazoles further demonstrates their utility in organic synthesis.  相似文献   

4.
Despite there being a straightforward approach for the synthesis of 1,2‐dihydropyridines, the transition‐metal‐catalyzed [2+2+2] cycloaddition reaction of imines with alkynes has been achieved only with imines containing an N‐sulfonyl or ‐pyridyl group. Considering the importance of 1,2‐dihydropyridines as useful intermediates in the preparation of a wide range of valuable organic molecules, it would be very worthwhile to provide novel strategies to expand the scope of imines. Herein we report a successful expansion of the scope of imines in nickel‐catalyzed [2+2+2] cycloaddition reactions with alkynes. In the presence of a nickel(0)/PCy3 catalyst, a reaction with N‐benzylidene‐P,P‐diphenylphosphinic amide was developed. Moreover, an application of N‐aryl imines to the reaction was also achieved by adopting N‐heterocyclic carbene ligands. The isolation of an (η2N‐aryl imine)nickel(0) complex containing a 14‐electron nickel(0) center and a T‐shaped 14‐electron five‐membered aza‐nickelacycle is shown. These would be considered as key intermediates of the reaction. The structure of these complexes was unambiguously determined by NMR spectroscopy and X‐ray analyses.  相似文献   

5.
A new strategy for the one‐pot synthesis of polysubstituted benzenes through a N,N‐dimethyl‐4‐aminopyridine (DMAP)‐catalyzed [4+2] benzannulation from readily prepared 1,3‐bis(sulfonyl)butadienes and γ‐substituted allenoates is described. This method provides a facile, metal‐free and general route to highly substituted benzenes under mild conditions in moderate‐to‐good yields with complete regioselectivity.  相似文献   

6.
The reaction of nornarcotine and 5‐bromonornarcotine, synthesized from noscapine, with suitable aromatic isocyanates or isothiocyanates provides a general method for the synthesis of aryl‐substituted N‐carbamoyl or N‐thiocarbamoylnarcotine and related compounds. Similarly, 15a has been prepared via the reduction of the lactone ring moiety of noscapine. Also, an improved procedure, which utilizes narcotine N‐oxide⋅HCl for generation of nornarcotine, is described.  相似文献   

7.
Ring opening reactions of N‐sulfonyl aziridines by primary and secondary amines in silica gel (SG)‐water system were achieved, which provided a mild, practical and environmentally benign method to synthesize mono‐ and bis‐sulfonyl substituted amines. When primary and secondary amines were used in excess, they reacted with N‐sulfonyl aziridines smoothly at room temperature, mainly affording 1:1 ring opening products. Reactions of primary amines with 2 equiv. of aziridines produced 2:1 ring opening products. Some 1:1 products can be cyclized with CS2 to synthesize N‐sulfonyl cyclothioureas also in water.  相似文献   

8.
We have developed a one‐pot procedure for the preparation of N,N‐disubstituted (Z)‐4‐(halomethylidene)‐4H‐3,1‐benzothiazin‐2‐amines 3 from 2‐(2,2‐dihaloethenyl)phenyl isothiocyanates 1 , easily accessible from known 2‐(2,2‐dihaloethenyl)benzenamines by a three‐step sequence, and secondary amines. Thus, the isothiocyanates 1 react with secondary amines to afford the corresponding thiourea derivatives, of which the treatment with NaH provides the desired products.  相似文献   

9.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

10.
A novel amine auxiliary for the asymmetric synthesis of α‐substituted N‐methylsulfonamides is described. The reaction of 4‐([1,1′‐biphenyl]‐4‐yl)‐2,2‐dimethyl‐1,3‐dioxan‐5‐amine ( 16 ) with various aliphatic sulfonyl chlorides afforded the corresponding sulfonamides, which were lithiated and subsequently reacted with electrophiles to give the corresponding products in high yields and good‐to‐excellent asymmetric inductions (de 83–95%). Racemization‐free cleavage of the auxiliary led to the α‐alkylated N‐methylsulfonamides in acceptable yields and high enantiomer purities (ee 91 to ≥98).  相似文献   

11.
The reactions of 1‐sulfonyl‐1H‐indazoles under basic conditions are discussed, and the direct N‐alkylation and Kemp elimination reactions of these compounds are reported. A series of 2‐(p‐tosylamino)benzonitriles and N‐alkyl indazoles were prepared in good yields. Moreover, the 2‐(p‐tosylamino)benzonitriles could be transformed into a diverse range of important derivatives in a one‐pot reaction. This method was successfully applied to the total syntheses of quindolinone and cryptolepinone; quindolinone was prepared in a one‐pot reaction from 1‐sulfonyl‐1H‐indazole.  相似文献   

12.
In recent years, α‐imino rhodium carbene complexes derived by ring‐opening of N‐sulfonyl‐1,2,3‐triazoles have attracted much attention from organic chemists. Many transformations of these species have been reported that involve, in most cases, nucleophilic attack at the carbene center of the α‐imino rhodium carbene, facilitating the synthesis of a wide range of novel and useful compounds, particularly heterocycles. This Minireview mainly focuses on advances in the transformation of N‐sulfonyl‐1,2,3‐triazoles during the past two years.  相似文献   

13.
Metal‐catalyzed hydroacylation of olefins represents an important atom‐economic synthetic process in C?H activation. For the first time highly efficient RhIIICp*‐catalyzed hydroacylation was realized in the coupling of N‐sulfonyl 2‐aminobenzaldehydes with both conjugated and aliphatic olefins, leading to the synthesis of various aryl ketones. Occasionally, oxidative coupling occurred when a silver(I) oxidant was used.  相似文献   

14.
A study on a rhodium(II )‐catalyzed reaction of N‐sulfonyl‐1,2,3‐triazoles with 2‐alkenols is reported. The reaction is initiated by insertion of an α‐imino carbene into the O–H linkage of alcohol, forming a 2‐alkenoxy enamide intermediate. A thermal [3,3]‐sigmatropic rearrangement follows to yield 2‐substituted 2‐amino ketone in a stereoselective manner. The successful application of this methodology to a formal synthesis of (–)‐α‐conhydrine is also described.  相似文献   

15.
A convenient synthesis of sulfonamides and sulfonyl azides from thiols is described. In situ preparation of sulfonyl chlorides from thiols was accomplished by oxidation with chloramine‐T (=N‐chlorotosylamide=N‐chloro‐4‐methylbenzenesulfonamide), tetrabutylammonium chloride (Bu4NCl), and H2O. The sulfonyl chlorides were then further allowed to react with excess amine or NaN3 in the same pot.  相似文献   

16.
In the present work, for the first time we have designed a novel approach for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles using reduced graphene oxide (rGO) decorated with Cu‐Ni bimetallic nanoparticles (NPs). In situ synthesis of Cu/Ni/rGO nanocomposite was performed by a cost efficient, surfactant‐free and environmentally benign method using Crataegus azarolus var. aronia L. leaf extract as a stabilizing and reducing agent. Phytochemicals present in the extract can be used to reduce Cu2+ and Ni2+ ions and GO to Cu NPs, Ni NPs and rGO, respectively. Analyses by means of FT‐IR, UV–Vis, EDS, TEM, FESEM, XRD and elemental mapping confirmed the Cu/Ni/rGO formation and also FT‐IR, NMR, and mass spectroscopy as well as elemental analysis were used to characterize the tetrazoles. The Cu/Ni/rGO nanocomposite showed the superior catalytic activity for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles within a short reaction time and high yields. Furthermore, this protocol eliminates the need to handle HN3.  相似文献   

17.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The rhodium(III)‐catalyzed [3+2] C? H cyclization of aniline derivatives and internal alkynes represents a useful contribution to straightforward synthesis of indoles. However, there is no report on the more challenging synthesis of pharmaceutically important N‐hydroxyindoles and 3H‐indole‐N‐oxides. Reported herein is the first rhodium(III)‐catalyzed [4+1] C? H oxidative cyclization of nitrones with diazo compounds to access 3H‐indole‐N‐oxides. More significantly, this reaction proceeds at room temperature and has been extended to the synthesis of N‐hydroxyindoles and N‐hydroxyindolines.  相似文献   

19.
A novel rhodium(II)‐catalyzed tandem cycloisomerization of methylenecyclopropanes (MCPs) with N‐sulfonyl 1,2,3‐triazoles is disclosed. The reaction produces a series of highly functionalized polycyclic N heterocycles via a rhodium imino carbene intermediate. A distinct feature of this divergent synthesis is that different types of substrates control the reaction pathways. Moreover, several interesting transformations of these products to construct diazabicyclo[3.2.1]octane derivatives are also reported.  相似文献   

20.
The synthesis of several Ntert‐butoxycarbonyl(Boc)‐protected‐N‐substituted hydrazines has been accomplished. The use of these protected hydrazines in SNAr substitutions leads to products in which the most nucleophilic nitrogen displaces the leaving group. Treatment of these compounds with trifluoroacetic acid readily removes the Boc‐protecting group and the intermediates readily undergo cyclizations to yield N‐1‐substituted aza‐benzothiopyranoindazoles, anthrapyrazoles and aza‐anthrapyrazoles. Side chain buildup was employed in the synthesis of several aza‐anthrapyrazoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号