首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002  相似文献   

2.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   

3.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

4.
Organo‐modified layered silicates were synthesized and used as inorganic carriers for CoCl2(PtBu2Me)2‐MAO catalyst in the polymerization of 1,3‐butadiene, yielding cis‐1,4‐enriched polybutadiene. The organoclays were prepared by: (i) intercalation of (ar‐vinyl‐benzyl)trimethyl ammonium chloride salt through an ion exchange reaction, and (ii) the edge‐surface grafting by trimethylchlorosilane. The ammonium modifier acts as “spacer” increasing the layer d‐spacing and as “filler” favoring the silylation of the edge‐surface clay hydroxyls. The grafted silane prevents the MAO cocatalyst from reacting with the edge‐OHs, by forcing it to react within the interlayer clay region. MAO lead to methylation of the cobalt complex and carbanion abstraction to give a cobalt‐methyl cation that is stabilized by the MAO anion. The nanoconfined cationic alkylated species insert the butadiene on the Co‐Me bond affording the growth of the polymer chains within the clay layers. The growing of the macromolecular chains fills the interlayer silicate region giving an intercalated polybutadiene rubber nanocomposite. The role of the silicate organo modification on the heterogeneous catalyst structural features, the polymerization behavior and the nanocomposite structures are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

6.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

7.
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H‐imidazo[4,5‐f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti‐trigonal prismatic geometry. The symmetry‐independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one‐dimensional ladder‐like chains which are connected through the IP ligands to form two‐dimensional layers. These two‐dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three‐dimensional supramolecular network.  相似文献   

8.
A new triphenylamine‐containing aromatic dicarboxylic acid, N,N′‐bis(4‐carboxyphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was synthesized by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluorobenzonitrile, followed by the alkaline hydrolysis of the intermediate dinitrile compound. A series of novel triphenylamine‐based aromatic poly(amine amide)s with inherent viscosities of 0.50–1.02 dL/g were prepared from the diacid and various aromatic diamines by direct phosphorylation polycondensation. All the poly(amine amide)s were amorphous in nature, as evidenced by X‐ray diffractograms. Most of the poly(amine amide)s were quite soluble in a variety of organic solvents and could be solution‐cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with glass‐transition temperatures up to 280 °C, 10% weight‐loss temperatures in excess of 575 °C, and char yields at 800 °C in nitrogen higher than 60%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 94–105, 2003  相似文献   

9.
4‐(Acylamino)‐5‐nitrosopyrimidines react either by a reductive condensation to provide 8‐substituted guanines, or by a Diels–Alder cycloaddition, or an ene reaction, to provide 6‐substituted pteridinones, depending on the nature of the acyl group and the reaction conditions. Experimental details are provided for the transformation of (acylamino)‐nitrosopyrimidines to 8‐substituted guanines, and the scope of the reaction is further demonstrated by transforming the trifluoro acetamide 25 to the 8‐(trifluoromethyl)guanine ( 27 ), and the N,Nbis(nitrosopyrimidinyl)‐dicarboxamide 29 to the (R,R)‐1,2di(guan‐8‐yl)ethane‐1,2‐diol ( 32 ). An intramolecular Diels–Alder reaction of the N‐sorbyl (=N‐hexa‐2,4‐dienoyl) nitrosopyrimidine 10 , followed by a spontaneous elimination to cleave the N,O bond of the initial cycloaddition product provided the pteridinones 14 or 15 , characterized by a (Z)‐ or (E)‐3‐hydroxyprop‐1‐enyl group at C(6). Treatment of 10 with Ph3P led to the C(8)‐penta‐1,3‐dienyl‐guanine 18 . The ene reaction of the N‐crotonyl (=N‐but‐2‐enoyl) nitrosopyrimidine 19 provided the 6‐vinyl‐pteridinone 20a that dimerized readily to 21a , while treatment of 19 with Ph3P led in high yield to 8‐(prop‐1‐enyl)guanine ( 23 ). The structure of the dimer 21 was established by X‐ray analysis of its bis(N,N‐dimethylformamidine) derivative 21b . The crystal structure of the nitroso amide 10 is characterized by two molecules in the centrosymmetric unit cell. Intermolecular H‐bonds connect the amino group to the amide carbonyl and to N(1). The crystalline bis(purine) 30 forms a left‐handed helix with four molecules per turn and a pitch of 30.2 Å.  相似文献   

10.
The title compound, C12H19N3O2, is an unusual product of silica‐catalyzed intermolecular condensation of α‐amino­isobutyric acid. The mol­ecule has three types of C—N bonds: a double bond, a cis‐amide bond and single bonds, two of which are typical and two having intermediate lengths due to π‐electron delocalization between C=N and C=O groups. The cis‐amide moieties interact to form dimers via hydrogen bonds which stack in parallel layers.  相似文献   

11.
In the title complex, benzene‐1,3,5‐tricarboxylic acid–pyrazine N,N′‐dioxide (2/1), C9H6O6·0.5C4H4N2O2, cocrystallized trimesic acid (TMA) and pyrazine N,N′‐dioxide (PNO) molecules form strong O—H...O hydrogen bonds, but also important weak C—H...O and dipole–dipole intermolecular interactions, to generate a densely packed three‐dimensional network. PNO molecules lie on inversion centres where they connect pairs of TMA sheets into distinct two‐dimensional hydrogen‐bonded layers perpendicular to the crystallographic ab diagonal.  相似文献   

12.
《中国化学》2018,36(3):227-232
A large‐pore ECNU‐19 material with unique pore system consisting of 12‐ring (12R) pore channels intersected by 8R channels was post‐synthesized via interlayer‐expansion of HUS‐2 lamellar silicate with silylating agent of 1,3‐dimethyltetramethoxydisiloxane (DMTMDS). In consideration of the fact that the HUS‐2 precursor possessed a special structure with a malposition of the neighboring layers as well as silicon vacancies on layer surface, a “detemplating disassembly – intercalation reassembly – silylation” strategy was proposed to realize a successful interlayer‐expansion and structural amending. An acid treatment was firstly performed to remove a part of the structure‐directing agent molecules, which favored the following intercalation by bulk organic species. The intercalation not only rearranged the relative position of up‐down layers but also provided enough interlayer space for the insertion of dimeric silane molecules. Two –OH groups attached to one silicon atom of the silane molecule reacted with two close silanols on the up‐surface layer, while the other two –OH groups condensed with two silanols on the down‐surface layer, which then connected the two layers via ‐Si‐O‐Si‐ pillars and constructed new 12R pores along a axis and 8R pores along c axis, respectively.  相似文献   

13.
An atom economic and facile synthesis of novel dispiro–oxindole–pyrrolidines has been achieved via a three‐component tandem cycloaddition of azomethine ylide generated in situ from isatin and sarcosine by decarboxylative condensation with N‐aryl‐3‐benzylidene‐pyrrolidine‐2,5‐dione derivatives as dipolarophiles. The salient features of synthetic procedure are characterized by the mild reaction conditions, high yields, high regioselectivity and stereoselectivity, one‐pot procedure, and operational simplicity. This regioselectivity was assumed to be under the influence of π–π stacking interactions between the aromatic rings of azomethine ylide and N‐aryl‐3‐benzylidene‐pyrrolidine‐2,5‐diones that further control the exo–endo selectivity of the reaction 1,3‐dipolar cycloaddition. The regiochemistry and structures of the cycloadducts were determined with spectroscopic data.  相似文献   

14.
Functional copolymer/organo‐silicate [N,N′‐dimethyldodecyl ammonium cation surface modified montmorillonite (MMT)] layered nanocomposites have been synthesized by interlamellar complex‐radical copolymerization of pre‐intercalated itaconic acid (IA)/organo‐MMT complex as a “nanoreactor” with n‐butyl methacrylate (BMA) as an internal plasticization comonomer in the presence of radical initiator. Comparative analysis of physical structure, dynamic mechanical analysis parameters, and surface morphology of the obtained copolymers and their nanocomposites indicated that the interlayer H‐bonding and flexible n‐butyl ester linkages take place an important role in interlamellar copolymerization and intercalation/exfoliation of copolymer chains. It was found that nanocomposites' dynamic mechanical properties strongly depended on the force of interfacial H‐bonding and amount of BMA units. An increase in both of these parameters leads to enhanced intercalation and exfoliation in situ processes of copolymer chains and the formation of hybrid nanocomposites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The title compound, C16H12N4S, forms a three‐dimensional layered network structure via intermolecular hydrogen bonding and π‐stacking. The azomethine molecule adopts the thermodynamically stable E regioisomer and the pyridine substituents are antiperiplanar. The mean planes of the pyridine rings and the azomethine group to which they are connected are twisted by 27.27 (5) and 33.60 (5)°. The electrochemical energy gap of 2.3 eV based on the HOMO–LUMO energy difference is in agreement with the spectroscopically derived value.  相似文献   

16.
程琳  应磊  杨小玲  蹇锡高 《中国化学》2005,23(2):200-203
A new monomer diacid, 1,2-dihydro-2-(4-carboxylphenyl)-4-[4-(4-carboxylphenoxy)-3-methylphenyl]phtha-lazin-1-one (3), was synthesized through the aromatic nucleophilic substitution reaction of a readily available unsymmetrical phthalazinone 1 bisphenol-like with p-chlorobenzonitrile in the presence of potassium carbonate in N,N-dimethylacetamide and alkaline hydrolysis. The diacid could be directly polymerized with various aromatic diamines 4a-4e using triphenyl phosphite and pyridine as condensing agents to give five new aromatic poly(ether amide)s 5a-5e containing the kink non-coplanar heterocyclic units with inherent viscosities of 1.30-1.54 dL/g.The polymers were readily soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethyl-acetamide (DMA), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidinone (NMP), and even in m-cresol and pyridine (Py). The transparent, flexible and tough films could be formed by solution casting. The glass transition tem-peratures Tg were in the range of 286-317℃.  相似文献   

17.
The X‐ray crystallographic studies are reported for a water‐soluble sodium complex of organic acid, {[Na(NSNDC)(H2O)2]·H2O}n, (NSNDC = 7‐Nitro‐5‐sulfonate‐napthalene‐1,4‐dicarboxy‐acid). It contains layers of vertically oriented NNSDC‐anions sandwiching cations and water molecules. The rows of anions are linked in a direction by sodium ions and along b by hydrogen bonding, which have microporous channels (9.410 × 3.210Å2) along the crystallographic b‐axis. Considering the Na coordination environments, π‐π stacking interaction between aryl ring and hydrogen bonds, the title compound represents a stably 2D infinitely extended structure.  相似文献   

18.
In the title compound, [CdCl2(C18H12N6)]·3H2O, the Cd atom has a distorted square‐pyramidal coordination geometry. The solvent water molecules are hydrogen bonded to each other to form planar cyclic water hexamers, which, together with other hydrogen bonds, interlink the Cd complex molecules to give one‐dimensional supramolecular ribbons that extend along the [111] direction. The chains are assembled into two‐dimensional layers parallel to (111) by π–π stacking interactions. Furthermore, interlayer π–π stacking interactions and weak C—H...Cl hydrogen bonds complete the formation of a three‐dimensional framework.  相似文献   

19.
The crystal structure of the title compound, {[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2O}n, is built up from two [Tm(SIP)(H2O)5] molecules (SIP3− is 5‐sulfonatobenzene‐1,3‐dicarboxylate), three 4,4′‐bipyridyl (bpy) molecules and one solvent water molecule. One of the bpy molecules and the solvent water molecule are located on an inversion centre and a twofold rotation axis, respectively. The TmIII ion coordination is composed of four carboxylate O atoms from two trianionic SIP3− ligands and five coordinated water molecules. The Tm3+ ions are linked by the SIP3− ligands to form a one‐dimensional zigzag chain propagating along the c axis. The chains are linked by interchain O—H...O hydrogen bonds to generate a two‐dimensional layered structure. The bpy molecules are not involved in coordination but are linked by O—H...N hydrogen bonds to form two‐dimensional layers. The two‐dimensional layers are further bridged by the bpy molecules as pillars and the solvent water molecules through hydrogen bonds, giving a three‐dimensional supramolecular structure. π–π stacking interactions between the parallel aromatic rings, arranged in an offset fashion with a face‐to‐face distance of 3.566 (1) Å, are observed in the crystal packing.  相似文献   

20.
A series of new N‐benzoyl‐Ntert‐butyl‐N′‐(β‐triphenylgermyl)propionylhydrazines were synthesized by the condensation reaction of β‐triphenylgermyl propanoic acid with N‐benzoyl‐Ntert‐butylhydrazines in good yields by using N,N′‐dicyclohexylcorbodiimide as dehydrating agent. These title compounds were evaluated for molting hormone mimicking activity. The results of bioassay showed that the compounds exhibit moderate larvicidal activity, and toxicity assays indicated that the title compounds can induce a premature, abnormal and lethal larval molt. We found that the title compounds possess potential anticancer activities in vitro. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号