首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Size‐controlled Ag0.04@Co0.48@Ni0.48 core–shell nanoparticles (NPs) were synthesized by employing graphene (rGO) with different reduction degrees as supports. The number of C?O and C? O functional groups on the surface of rGO might play a major role in controlling the particle size. The strong steric‐hindrance effect of C?O resulted in the growth of large particles, whereas C? O contributed to the formation of small particles. The particle size of Ag0.04@Co0.48@Ni0.48 NPs supported on rGO with different reduction degrees decreased as the number of C?O functional groups decreased. The decrease in the particle size probably led to the increase in the catalytic activity towards the hydrolysis of ammonia borane (AB). The enhanced catalytic activity largely stemmed from the increasing active sites on the surface of catalysts owing to the decreasing particle size.  相似文献   

2.
A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst.  相似文献   

3.
A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion‐like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core–shell NPs, which differs from the traditional seed‐mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion‐like Pd@Pt core–shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro–mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.  相似文献   

4.
Atomically precise polyoxometalate–Ag2S core–shell nanoparticles were generated in a top‐down approach under solvothermal conditions and structurally confirmed by X‐ray single‐crystal diffraction as an interesting core–shell structure comprising an in situ generated Mo6O228? polyoxometalate core and a mango‐like Ag58S38 shell. This result demonstrates the possibility to integrate polyoxometalate and Ag2S nanoparticles into a core–shell heteronanostructure with precisely controlled atomical compositions of both core and shell.  相似文献   

5.
Self‐assembly of metavanadate and organosilver(I) salts leads to a novel dodecahedrane‐like [Ag30(tBuS)20]10+ silver(I) thiolate nanocage that tightly wraps an unusual C2h polyoxovanadate anion. The polyoxovanadate core undergoes transformation to a D3d configuration upon acidification, and reverts back to its original C2h structure upon addition of base. Chromism was observed for the silver(I) thiolate cluster during the configurational change of the central polyoxovanadate core; the color of the solution changes reversibly from green to dark yellow. This work represents the first reported example of chromic polyoxometalate‐templated silver(I) thiolate shells that respond to external acid–base stimuli. It also represents an important advance in providing crystallographic proof that structural transformations occur in a nanoscale core–shell cluster.  相似文献   

6.
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres.  相似文献   

7.
We introduce the class of discrete silver(I)‐palladium(II)‐oxo nanoclusters with the preparation of {Ag4Pd13} and {Ag5Pd15}. Both polyanions represent the first examples of noble metal‐capped polyoxo‐noble‐metalates in a fully inorganic assembly, featuring an unprecedented host–guest mode containing hetero‐ and homometallic Ag–Pd and Ag–Ag bonding interactions. Comprehensive theoretical calculations suggest that the Ag–Pd metallic bonds originate partially from surface confinement of AgI guest ions onto the anionic polyoxopalladate host that is induced by strong electrostatic forces. This work opens the field of fully inorganic silver‐palladium‐oxo nanoclusters, which can be considered as discrete mixed noble metal precursors for the formation of monodisperse core–shell nanoparticles, with high relevance for catalysis.  相似文献   

8.
The synthesis and structure of a giant 102‐silver‐atom nanocluster (NC) 1 is presented. X‐ray structural analysis reveals that 1 features a multi‐shelled metallic core of Ag6@Ag24@Ag60@Ag12. An octahedral Ag6 core is encaged by a truncated octahedral Ag24 shell. The Ag24 shell is composed of a hitherto unknown sodalite‐type silver orthophosphate cluster (SOC) {(Ag3PO4)8}, reminiscent of the Ag3PO4 photocatalyst. The SOC is capped by six interstitial sulfur atoms, giving a unique anionic cluster [Ag6@{(Ag3PO4)8}S6]6?, which functions as an intricate polyhedral template with abundant surface O and S atoms guiding the formation of a rare rhombicosidodecahedral Ag60 shell. An array of 6 linear Ag2 staples further surround this Ag60 shell. [Ag6@{(Ag3PO4)8}S6]6? is an unusual Ag‐based templating anion to induce the assembly of a SOC within silver NC. This finding provides molecular models for bulk Ag3PO4, and offers a fresh template strategy for the synthesis of silver NCs with high symmetry.  相似文献   

9.
The direct synthesis of nanostructured electrode materials on three‐dimensional substrates is important for their practical application in electrochemical cells without requiring the use of organic additives or binders. In this study, we present a simple two‐step process to synthesize a stable core–shell structured cobalt sulfide/cobalt aluminum hydroxide nanosheet (LDH‐S) for pseudocapacitor electrode application. The cobalt aluminum layered double hydroxide (CoAl‐LDH) nanoplates were synthesized in basic aqueous solution with a kinetically‐controlled thickness. Owing to the facile diffusion of electrolytes through the nanoplates, thin CoAl‐LDH nanoplates have higher specific capacitance values than thick nanoplates. The as‐grown CoAl‐LDH nanoplates were transformed into core–shell structured LDH‐S nanosheets by a surface modification process in Na2S aqueous solution. The chemically robust cobalt sulfide (CoS) shell increased the electrochemical stability compared to the sulfide‐free CoAl‐LDH electrodes. The LDH‐S electrodes exhibited high electrochemical performance in terms of specific capacitance and rate capability with a galvanostatic discharge of 1503 F g?1 at a current density of 2 A g?1 and a specific capacitance of 91 % at 50 A g?1.  相似文献   

10.
Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts. Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs. Herein, we report a new class of double‐layered plasmonic–magnetic vesicle assembled from Janus amphiphilic Au‐Fe3O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3O4 surfaces separately. Like liposomes, the vesicle shell is composed of two layers of Au‐Fe3O4 NPs in opposite direction, and the orientation of Au or Fe3O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers.  相似文献   

11.
To enhance the catalytic activity in a selective one‐pot oxidation using in‐situ generated H2O2, a hydrophobically modified core–shell catalyst was synthesized by means of a simple silylation reaction using the fluorine‐containing silylation agent triethoxyfluorosilane (TEFS, SiF(OEt)3). The catalyst consisted of a Pd‐supported silica nanosphere and a mesoporous silica shell containing isolated TiIV and F ions bonded with silicon (Si?F bond). Structural analyses using XRD and N2 adsorption–desorption suggested that the mesoporous structure and large surface area of the mesoporous shells were retained even after the modification. During the one‐pot oxidation of sulfide, catalytic activity was enhanced significantly by increasing the amount of fluorine in the shell. A hydrophobic surface enhanced adsorption of the hydrophobic reactant into the mesopore, while the less hydrophobic oxygenated products efficiently diffused into the outside of the shell, which improved the catalytic activity and selectivity. In addition, the present methodology can be used to enhance the catalytic activity and selectivity in the one‐pot oxidation of cyclohexane by using an Fe‐based core–shell catalytic system.  相似文献   

12.
《化学:亚洲杂志》2017,12(3):347-354
Novel hollow Ag/MnO2 nanostructures with controlled shell composition and structure were designed and synthesized. In the present synthetic procedure, silver nanocrystals were oxidized by KMnO4, and MnO2 was heterogeneously formed on the surface of silver nanocrystals, then released Ag+ was photoreduced to silver adjacent to MnO2. By simply changing the photoreduction moment, simultaneously with or after the addition of KMnO4, hollow Ag/MnO2 structures with different shell architectures—a monolayered shell composed of evenly mixed silver and MnO2 and a double‐layered shell composed of an inner MnO2 layer and an outer silver layer—can be obtained. Furthermore, the morphology of the hollow structure can be tuned by selecting different silver precursors, and the ratio of silver to MnO2 in the shell can also be controlled by adjusting the ratio in the original reaction mixture. Electrochemical measurements revealed significantly enhanced catalytic performance in the oxygen reduction reaction for the prepared hollow structures. Compared with the Ag/MnO2 composite, the onset potentials positively shift by about 50.0 mV and limiting current densities are nearly 2.0 times higher.  相似文献   

13.
The surface plasmon resonance (SPR) properties of Au/AuxAg1?x core/alloy nanoparticles (NPs) have been investigated by means of the discrete dipole approximation. The core/alloy microstructure was varied by changing the shell alloy composition x, its thickness tS, and the shell thickness to core radius ratio (tS/rC) in the range of 0.05–1.0. These changes resulted in a novel tuning of SPR shape, frequency, and extinction. These models were compared with experimental results for Au/AuxAg1?x NPs prepared by a microwave‐mediated hydrothermal processing method, which produces core/alloy NPs with SPR signatures closely resembling those of the models.  相似文献   

14.
By directly reducing alkynyl–silver precursors, we successfully obtained a large alkynyl‐protected silver nanocluster, (C7H17ClN)3[Ag112Cl6(C≡CAr)51], which is hitherto the largest structurally characterized silver nanocluster in the alkynyl family. The cluster exhibits four concentric core–shell structures (Ag13@Ag42@Ag48@Ag9), and four types of alkynyl–silver binding modes are observed. Chloride was found to be critical for the stabilization and formation of the silver nanocluster. The release of chloride ions in situ from CH2Cl2 solvent has been confirmed by mass spectrometry. This study suggests that the combination of alkynyl and halide ligands will pave a new way for the synthesis of large silver nanoclusters.  相似文献   

15.
Well‐dispersed core–shell Ru@M (M=Co, Ni, Fe) nanoparticles (NPs) supported on carbon black have been synthesized via a facile in situ one‐step procedure under ambient condition. Core‐shell Ru@Co NPs were synthesized and characterized for the first time. The as‐synthesized Ru@Co and Ru@Ni NPs exhibit superior catalytic activity in the hydrolysis of ammonia borane compared with their monometallic and alloy counterparts. The Ru@Co/C NPs are the most reactive, with a turnover frequency (TOF) value of 320 (mol min?1) molRu?1 and activation energy (Ea) of 21.16 kJ mol?1. Ru@Ni/C NPs are the next most active, whereas Ru@Fe/C NPs are almost inactive. Additionally, the as‐synthesized NPs supported on carbon black exhibit higher catalytic activity than catalysts on other conventional supports, such as SiO2 and γ‐Al2O3.  相似文献   

16.
The synthesis of silica‐based yolk–shell nanospheres confined with ultrasmall platinum nanoparticles (Pt NPs) stabilized with poly(amidoamine), in which the interaction strength between Pt NPs and the support could be facilely tuned, is reported. By ingenious utilization of silica cores with different surface wettability (hydrophilic vs. ‐phobic) as the adsorbent, Pt NPs could be confined in different locations of the yolk–shell nanoreactor (core vs. hollow shell), and thus, exhibit different interaction strengths with the nanoreactor (strong vs. weak). It is interesting to find that the adsorbed Pt NPs are released from the core to the hollow interiors of the yolk–shell nanospheres when a superhydrophobic inner core material (SiO2?Ph) is employed, which results in the preparation of an immobilized catalyst (Pt@SiO2?Ph); this possesses the weakest interaction strength with the support and shows the highest catalytic activity (88 500 and 7080 h?1 for the hydrogenation of cyclohexene and nitrobenzene, respectively), due to its unaffected freedom of Pt NPs for retention of the intrinsic properties.  相似文献   

17.
Metal–support cooperative catalysts have been developed for sustainable and environmentally benign molecular transformations. The active metal centers and supports in these catalysts could cooperatively activate substrates, resulting in high catalytic performance for liquid‐phase reactions under mild conditions. These catalysts involved hydrotalcite‐supported gold and silver nanoparticles with high catalytic activity for organic reactions such as aerobic oxidation, oxidative carbonylation, and chemoselective reduction of epoxides to alkenes and nitrostyrenes to aminostyrenes using alcohols and CO/H2O as reducing reagents. This high catalytic performance was due to cooperative catalysis between the metal nanoparticles and basic sites of the hydrotalcite support. To increase the metal–support cooperative effect, core–shell nanostructured catalysts consisting of gold or silver nanoparticles in the core and ceria supports in the shell were designed. These core–shell nanocomposite catalysts were effective for the chemoselective hydrogenation of nitrostyrenes to aminostyrenes, unsaturated aldehydes to allyl alcohols, and alkynes to alkenes using H2 as a clean reductant. In addition, these solid catalysts could be recovered easily from the reaction mixture by simple filtration, and were reusable with high catalytic activity.  相似文献   

18.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   

19.
Using polyhedral oligomeric silsesquioxane (POSS) modified by a thiol group as a protected ligand, atom‐precise multi‐heteorocluster‐based dendrimers Ag12@POSS6 ( 1 a and 1 b ) were assembled. Through the reactive ?SH groups, six POSS shell ligands stabilize the central 12‐core silver(I) cluster by diverse Ag?S interactions. When such Ag12@POSS6 complex was stimulated by different solvents (acetone or tetrahydrofuran), the core Ag12 silver(I) cluster underwent reversible structural transformation between flattened cubo‐octahedral (in 1 a ) and normal cubo‐octahedral (in 1 b ); concomitantly shell POSS clusters rearranged from pseudo‐octahedral to quasi‐octahedral. Furthermore, the film matrix modified by 1 a or 1 b showed different hydrophobicity.  相似文献   

20.
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO2 nanoparticles. Two kinds of silver–silica core–shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing agents onto substrate surfaces with Rose Bengal monolayers, an enhancement of about 27 times, compared with the control sample, is achieved by using the Ag@SiO2 nanoparticles with shells of about 3 nm, whereas an enhancement of around 11.7 times is obtained when using those with thicker shells. The effects of shell thickness and surface density of the enhancing agents on the enhancement have been investigated experimentally. The results show that this method can be potentially helpful in fluorescence‐based surface analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号