首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plating battery electrodes typically deliver higher specific capacity values than insertion or conversion electrodes because the ion charge carriers represent the sole electrode active mass, and a host electrode is unnecessary. However, reversible plating electrodes are rare for electronically insulating nonmetals. Now, a highly reversible iodine plating cathode is presented that operates on the redox couples of I2/[ZnIx(OH2)4?x]2?x in a water‐in‐salt electrolyte. The iodine plating cathode with the theoretical capacity of 211 mAh g?1 plates on carbon fiber paper as the current collector, delivering a large areal capacity of 4 mAh cm?2. Tunable femtosecond stimulated Raman spectroscopy coupled with DFT calculations elucidate a series of [ZnIx(OH2)4?x]2?x superhalide ions serving as iodide vehicles in the electrolyte, which eliminates most free iodide ions, thus preventing the consequent dissolution of the cathode‐plated iodine as triiodides.  相似文献   

2.
A series of neutral oxamato‐bridged heterobimetallic chains of general formula [MCu(Lx)2(S)2] ? p S ? q H2O [p=0–1, q=0–2.5; L1=N‐2,6‐dimethylphenyloxamate, S=DMF with M=Mn ( 1 a ) and Co ( 1 b ); L2=N‐2,6‐diethylphenyloxamate, S=DMF with M=Mn ( 2 a ) and Co ( 2 b ) or S=DMSO with M=Mn ( 2 c ) and Co ( 2 d ); L3=N‐2,6‐diisopropylphenyloxamate, S=DMF with M=Mn ( 3 a ) and Co ( 3 b ) or S=DMSO with M=Mn ( 3 c ) and Co ( 3 d )] were prepared by treating the corresponding anionic oxamatocopper(II) complexes [Cu(Lx)2]2? (x=1–3) with M2+ cations (M=Mn and Co) in DMF or DMSO as the solvent. The single‐crystal X‐ray structures of 2 a and 3 a reveal the occurrence of well‐isolated, zigzag, oxamato‐bridged manganese(II)–copper(II) chains. The intrachain Cu ??? Mn distances across the oxamato bridge are 5.3761(7) and 5.4002(17) Å for 2 a and 3 a , respectively, whereas the shortest interchain Mn ??? Mn distances are 9.4475(16) and 8.1649(14) Å for 2 a and 3 a , respectively. All of these MIICuII chains (M=Mn and Co) exhibit 1D ferrimagnetic behaviour with moderately strong intrachain antiferromagnetic coupling between the square‐planar CuII and octahedral high‐spin MII ions across the oxamato bridge [?J=31.4–35.2 and 33.4–44.8 cm?1, respectively; H =∑i?J S M,i( S Cu,i+ S Cu,i?1)]. Only the CoIICuII chains show slow magnetic relaxation effects characteristic of single‐chain magnets (SCMs). Analysis of the magnetic relaxation dynamics of 3 d shows a thermally activated mechanism (Arrhenius law dependence) with values of the pre‐exponential factor (τ0=2.6×10?9 s) and activation energy (Ea=7.7 cm?1) that are typical of SCMs. In contrast, two relaxation regimes are observed for 2 d in different temperature regions (τ0=3.2×10?10 s and Ea=24.7 cm?1 for T<4.5 K and τ0=3.2×10?14 s and Ea=37.5 cm?1 for T>4.5 K).  相似文献   

3.
The metal ion distribution on the two metal sites of monoclinic Mn1?xCux(HCOO)2 · 2(H,D)2O mixed crystals are studied by infrared and Raman spectroscopic methods. The spectral regions 3 200–3 400 cm?1 (vOH), 2 875–2 990 cm?1 (vCH), 2 330–2 500 cm?1 (vOD of matrix isolated HDO molecules), 1 350–1 400 cm?1 (symmetric CO2 stretching modes), 570–950 cm?1 (H2O librations), and 490 cm?1 (M? O lattice modes) are mostly sensitive to the metal ions present. The frequency shifts of these bands with increasing content of copper show that Cu2+ prefers the M(1) site, coordinated by HCOO? only. The strengths of the hydrogen bonds increase on going from manganese to copper formate, due to the increased synergetic effect of Cu2+. Solubility and X-ray data of the mixed crystals are included. Irrespective of the same crystal structure, two series of mixed crystals are formed: eutonic area at 0.65 ≥ x ≥ 0.5.  相似文献   

4.
Complexes [Fe9(X)2(O2CMe)8{(2‐py)2CO2}4] (X?=OH? ( 1 ), N3? ( 2 ), and NCO? ( 3 )) have been prepared by a route previously employed for the synthesis of analogous Co9 and Ni9 complexes, involving hydroxide substitution by pseudohalides (N3?, NCO?). As indicated by DC magnetic susceptibility measurements, this substitution induced higher ferromagnetic couplings in complexes 2 and 3 , leading to higher ground spin states compared to that of 1 . Variable‐field experiments have shown that the ground state is not well isolated from excited states, as a result of which it cannot be unambiguously determined. AC susceptometry has revealed out‐of‐phase signals, which suggests that these complexes exhibit a slow relaxation of magnetization that follows Arrhenius behavior, as observed in single‐molecule magnets, with energy barriers of 41 K for 2 (τ0=3.4×10?12 s) and 44 K for 3 (τ0=2.0×10?11 s). Slow magnetic relaxation has also been observed by zero‐field 57Fe Mössbauer spectroscopy. Characteristic integer‐spin electron paramagnetic resonance (EPR) signals have been observed at X‐band for 1 , whereas 2 and 3 were found to be EPR‐silent at this frequency. 1H NMR spectrometry in CD3CN has shown that complexes 1 – 3 are stable in solution.  相似文献   

5.
Abstract. A new dinuclear complex, [Cu21, 3‐NCS)2(Ophen)2(OH2)2], (HOphen = 1, 10‐phenanthrolin‐2‐ol) was synthesized and its crystal structure was determined by X‐ray crystallography. In the complex, the CuII ion assumes a distorted square pyramidal arrangement and the thiocyanate anion functions as bridged ligand and Ophen as capped ligand. The analysis of the crystal structure shows that there exists a π–π stacking interaction between the adjacent complexes. The theoretical calculations reveal that the magnetic coupling pathways from the thiocyanate anions bridge ligand and the π–π stacking magnetic coupling pathway resulted in the weak ferromagnetic interactions with 2J = 18.46 cm–1 and 2J = 10.46 cm–1, respectively. The calculations also display that the spin delocalization and the spin polarization occur in the bridge magnetic coupling system and the π–π stacking magnetic coupling system, and the magnetic coupling mechanism of the π–π stacking can be explained with McConnell I spin‐polarization mechanism. The fitting for the data of the variable‐temperature magnetic susceptibility with dinuclear CuII formula gave the magnetic coupling constant 2J = 2.84 cm–1 and zJ′ = 0.03 cm–1, in which the 2J = 2.84 cm–1 is attributed to the magnetic coupling from the bridge dinuclear CuII unit and the zJ′ = 0.03 cm–1 is ascribed to the π–π stacking magnetic coupling system. The study may benefit to understand the magnetic coupling mechanism of π–π stacking system.  相似文献   

6.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

7.
Resonant excitation energy transfer from [Cr(ox)3]3? to [Cr(bpy)3]3+ in the doped 3D oxalate networks [Rh1?xCrx(bpy)3][NaMIII1?yCry(ox)3]ClO4 (ox=C2O4?, bpy=2,2′‐bipyridine, M=Al, Rh) is due to two types of interaction, namely super exchange coupling and electric dipole–dipole interaction. The energy transfer probability for both mechanisms is proportional to the spectral overlap of the 2E→4A2 emission of the [Cr(ox)3]3? donor and the 4A22T1 absorption of the [Cr(bpy)3]3+ acceptor. The spin‐flip transitions of (pseudo‐)octahedral Cr3+ are known to shift to lower energy with increasing pressure. Because the shift rates of the two transitions in question differ, the spectral overlap between the donor emission and the acceptor absorption is a function of applied pressure. For [Rh1?xCrx(bpy)3][NaM1?yCry(ox)3]ClO4 the spectral overlap is thus substantially reduced on increasing pressure from 0 to 2.5 GPa. As a result, the energy transfer probability decreases with increasing pressure as evidenced by a decrease in the relative emission intensity from the [Cr(bpy)3]3+ acceptor.  相似文献   

8.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

9.
Strontium phosphate apatites containing different amounts of copper were prepared by a solid state reaction at 1100 °C or by arc melting above 1600 °C in air. The samples were characterized by X‐ray diffraction, ICP analysis, scanning electron microscopy, IR spectroscopy, MAS—1H—NMR, diffuse reflectance spectroscopy, and SQUID magnetometry. X‐ray crystal structure determination was carried out for a single crystal obtained from the melt. The compound is formulated as Sr5(PO4)3(CuO2)1/3 and has an apatite structure (space group P63/m, a = 9.7815(4)Å, c = 7.3018(4)Å, Z = 2) with linear CuO23— ions occupying hexagonal channels. For solid state synthesized samples, Rietveld refinement of powder XRD patterns was performed. The samples obtained at 1100 °C acquire the composition Sr5(PO4)3CuxOHy, with x changing from 0.01 to 0.62 and y < 1—x. The copper content can be increased to x = 0.85 by annealing in argon at 950 °C. The compounds represent a hydroxyapatite in which part of the protons is substituted by Cu+ and Cu2+ ions. The ions form linear O—Cu—O units which are progressively condensed creating the Cu—O—Cu bridges on increasing copper content. IR and NMR data testify existence of OH groups, non‐disturbed and disturbed by neighboring Cu atoms. In the electron spectra, the samples exhibit absorption bands at 7800‐7900, 14200‐14500 and 17500‐17550 cm—1, which were assigned to Cu2+ d‐electron transitions. By annealing the sample with x = 0.1 in oxygen at 800 °C copper is fully oxidized while retaining in channels in unusual for Cu2+ linear coordination.  相似文献   

10.
Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)‐iPr‐Pybox (2,6‐bis[4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine) and (SRSR/RSRS)‐Ind‐Pybox (2,6‐bis[8H‐indeno[1,2‐d]oxazolin‐2‐yl]pyridine), have been combined with lanthanide ions (Gd3+, Nd3+) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN?‐bridged coordination chains: {[LnIII(SS/RRiPr‐Pybox)(dmf)4]3[WV(CN)8]3}n ? dmf ? 4 H2O (Ln=Gd, 1 ‐SS and 1 ‐RR; Ln=Nd, 2 ‐SS and 2 ‐RR) and {[LnIII(SRSR/RSRS‐Ind‐Pybox)(dmf)4][WV(CN)8]}n ? 5 MeCN ? 4 MeOH (Ln=Gd, 3 ‐SRSR and 3 ‐RSRS; Ln=Nd, 4 ‐SRSR and 4 ‐RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200–450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the GdIII‐WV chains show dominant ligand‐based red phosphorescence, with λmax≈660 nm for 1 ‐(SS/RR) and 680 nm for 3 ‐(SRSR/RSRS). The NdIII‐WV chains, 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS), exhibit near‐infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra‐f 4F3/24I9/2,11/2,13/2 transitions of the NdIII centers. This emission is realized through efficient ligand‐to‐metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [WV(CN)8]3? moieties connected by cyanide bridges, 1 ‐(SS/RR) and 3 ‐(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between GdIII (SGd=7/2) and WV (SW=1/2) centers with J 1 ‐(SS)=?0.96(1) cm?1, J 1 ‐(RR)=?0.95(1) cm?1, J 3 ‐(SRSR)=?0.91(1) cm?1, and J 3 ‐(RSRS)=?0.94(1) cm?1. 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS) display ferromagnetic coupling within their NdIII‐NC‐WV linkages.  相似文献   

11.
Magnetic anisotropy is the key element in the construction of single‐ion magnets, a kind of nanomagnets for high‐density information storage. This works describes an unusual large easy‐plane magnetic anisotropy (with a zero‐field splitting parameter D of +40.2 cm?1), mainly arising from the second‐order spin‐orbit coupling effect in a trigonal‐planar CoII complex [Li(THF)4][Co(NPh2)3], revealed by combined studies of magnetism, high frequency/field electron paramagnetic resonance spectroscopy, and ab initio calculations. Meanwhile, the field‐induced slow magnetic relaxation in this complex was mainly attributed to the Raman process.  相似文献   

12.
A new bis(pyrazolylpyridine) ligand (H2L) has been prepared to form functional [Fe2(H2L)3]4+ metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2(H2L)3]X(PF6)2?xCH3OH ( 1 , x=5.7 and X=Cl; 2 , x=4 and X=Br), X@[Fe2(H2L)3]X(PF6)2?yCH3OH?H2O ( 1 a , y=3 and X=Cl; 2 a , y=1 and X=Br) and X@[Fe2(H2L)3](I3)2?3 Et2O ( 1 b , X=Cl; 2 b , X=Br). Their structure and functional properties are described in detail by single‐crystal X‐ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2 , respectively, by a single‐crystal‐to‐single‐crystal mechanism. The three possible magnetic states, [LS–LS], [LS–HS], and [HS–HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the FeII centers. The nature of the guest (Cl? vs. Br?) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS–HS] or [HS–HS] states are generated through irradiation. All helicates (X@[Fe2(H2L)3])3+ persist in solution.  相似文献   

13.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   

14.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

15.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

16.
Intramolecular Antiferromagnetism in [Cr2(μ-NH2)3(NH3)6]I3 The magnetism of [Cr2(μ-NH2)3(NH3)6]I3 which consists of binuclear cations with NH2?-bridged face-sharing octahedral coordination polyhedra and a metal-metal separation of 264.9 pm can be explained by antiferromagnetically exchange-coupled CrIII-3d3 pairs. The magnetochemical analysis in the temperature range 5 K – 295 K on the basis of the isotropic Heisenberg model (spin Hamiltonian ? = ?2 J?1 · ?2) leads to the parameter value J = ?98(3) cm?1. Compared to the exchange coupling in corresponding binuclear chromium compounds with OH? bridges and identical metal-metal separation the strength of the coupling is significantly enhanced (JNH2/JOH ≈? 1.6).  相似文献   

17.
Three lanthanide‐based two‐dimensional (2D) coordination polymers (CPs), [Ln(L)(H2O)2]n, {H3L=(HO)2P(O)CH2CO2H; Ln=Dy3+ (CP 1 ), Er3+ (CP 2 )} and [{Gd2(L)2(H2O)3}.H2O]n, (CP 3 ) were hydrothermally synthesized using phosphonoacetic acid as a linker. Structural features revealed that the dinuclear Ln3+ nodes were present in the 2D sheet of CP 1 and CP 2 while in the case of CP 3 , nodes were further connected to each other forming a chain‐type arrangement throughout the network. The magnetic studies show field‐induced slow magnetic relaxation property in CP 1 and CP 2 with Ueff values of 72 K (relaxation time, τ0=3.05×10?7 s) and 38.42 K (relaxation time, τ0=4.60×10?8 s) respectively. Ab‐initio calculations suggest that the g tensor of Kramers doublet of the lanthanide ion (Dy3+ and Er3+) is strongly axial in nature which reflects in the slow magnetic relaxation behavior of both CPs. CP 3 exhibits a significant magnetocaloric effect with ?ΔSm=49.29 J kg?1 K?1, one of the highest value among the reported 2D CPs. Moreover, impedance analysis of all the CPs show high proton conductivity with values of 1.13×10?6 S cm?1, 2.73×10?3 S cm?1 and 2, 6.27×10?6 S cm?1 for CPs 1 – 3 , respectively, at high temperature (>75 °C) and maximum 95 % relative humidity (RH).  相似文献   

18.
We report the synthesis, crystal structures, and spectral, thermal, and magnetic properties of a family of metal–organic perovskite ABX3, [C(NH2)3][MII(HCOO)3], in which A=C(NH2)3 is guanidinium, B=M is a divalent metal ion (Mn, Fe, Co, Ni, Cu, or Zn), and X is the formate HCOO?. The compounds could be synthesized by either diffusion or hydrothermal methods from water or water‐rich solutions depending on the metal. The five members (Mn, Fe, Co, Ni, and Zn) are isostructural and crystallize in the orthorhombic space group Pnna, while the Cu member in Pna21. In the perovskite structures, the octahedrally coordinated metal ions are connected by the antianti formate bridges, thus forming the anionic NaCl‐type [M(HCOO)3]? frameworks, with the guanidinium in the nearly cubic cavities of the frameworks. The Jahn–Teller effect of Cu2+ results in a distorted anionic Cu–formate framework that can be regarded as Cu–formate chains through short basal Cu? O bonds linked by the long axial Cu? O bonds. These materials show higher thermal stability than other metal–organic perovskite series of [AmineH][M(HCOO)3] templated by the organic monoammonium cations (AmineH+) as a result of the stronger hydrogen bonding between guanidinium and the formate of the framework. A magnetic study revealed that the five magnetic members (except Zn) display spin‐canted antiferromagnetism, with a Néel temperature of 8.8 (Mn), 10.0 (Fe), 14.2 (Co), 34.2 (Ni), and 4.6 K (Cu). In addition to the general spin‐canted antiferromagnetism, the Fe compound shows two isothermal transformations (a spin‐flop and a spin‐flip to the paramagnetic phase) within 50 kOe. The Co member possesses quite a large canting angle. The Cu member is a magnetic system with low dimensional character and shows slow magnetic relaxation that probably results from the domain dynamics.  相似文献   

19.
A family of five isostructural butterfly complexes with a tetranuclear [Ln4] core of the general formula [Ln4(LH)22‐η1η1Piv)(η2‐Piv)(μ3‐OH)2]?x H2O?y MeOH?z CHCl3 ( 1 : Ln=DyIII, x=2, y=2, z=0; 2 : Ln=TbIII, x=0, y=0, z=6; 3 : Ln=ErIII, x=2, y=2, z=0; 4 : Ln=HoIII, x=2, y=2, z=0; 5 : Ln=YbIII, x=2, y=2, z=0; LH4=6‐{[bis(2‐hydroxyethyl)amino]methyl}‐N′‐(2‐hydroxy‐3‐methoxybenzylidene)picolinohydrazide; PivH=pivalic acid) was isolated and characterized both structurally and magnetically. Complexes 1 – 5 were probed by direct and alternating current (dc and ac) magnetic susceptibility measurements and, except for 1 , they did not display single‐molecule magnetism (SMM) behavior. The ac magnetic susceptibility measurements show frequency‐dependent out‐of‐phase signals with one relaxation process for complex 1 and the estimated effective energy barrier for the relaxation process was found to be 49 K. We have carried out extensive ab initio (CASSCF+RASSI‐SO+SINGLE_ANISO+POLY_ANISO) calculations on all the five complexes to gain deeper insights into the nature of magnetic anisotropy and the presence and absence of slow relaxation in these complexes. Our calculations yield three different exchange coupling for these Ln4 complexes and all the extracted J values are found to be weakly ferro/antiferromagentic in nature (J1=+2.35, J2=?0.58, and J3=?0.29 cm?1 for 1 ; J1=+0.45, J2=?0.68, and J3=?0.29 cm?1 for 2 ; J1=+0.03, J2=?0.98, and J3=?0.19 cm?1 for 3 ; J1=+4.15, J2=?0.23, and J3=?0.54 cm?1 for 4 and J1=+0.15, J2=?0.28, and J3=?1.18 cm?1 for 5 ). Our calculations reveal the presence of very large mixed toroidal moment in complex 1 and this is essentially due to the specific exchange topology present in this cluster. Our calculations also suggest presence of single‐molecule toroics (SMTs) in complex 2 . For complexes 3 – 5 on the other hand, the transverse anisotropy was computed to be large, leading to the absence of slow relaxation of magnetization. As the magnetic field produced by SMTs decays faster than the normal spin moments, the concept of SMTs can be exploited to build qubits in which less interference and dense packing are possible. Our systematic study on these series of Ln4 complexes suggest how the ligand design can help to bring forth such SMT characteristics in lanthanide complexes.  相似文献   

20.
The polynuclear copper(II) complex [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2]n, 1 is bridged by ClDHBQ?2 (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone dianionic) and 2,2′‐dipyridylamine (Hdpa). In the axial position, Cu is connected with the oxygen atom of ClO. The perchlorate anion may be envisaged as a monodentate O‐bound ligand. Through the bond bridge of O–Cu … O–Cl, the binuclear compound [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2] is strung together into a long chain compound. Tetrachlorocatechol underwent partial oxidation/hydrolysis/dechlorination processes to produce ClDHBQ?2. The other mononuclear complex [Cu(Hdpa)(TeCQ)](DMF), 2 , in which tetrachloroquinone (TeCQ) was produced by oxidation of tetrachlorocatechol (TeCC), therefore complex 2 is in the quinone form. The magnetic susceptibility measurements show antiferromagnetic coupling with J = ?11.9 cm?1, θ = 2.6 K, and g = 2.05 for complex 1. Complex 2 exhibits the typical paramagnetic behavior of s = 1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号