首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radical stabilization energies (RSE)s have been calculated for a variety of boryl radicals complexed to Lewis bases at the G3(MP2)‐RAD level of theory. These are referenced to the B? H bond dissociation energy (BDE) in BH3 determined at W4.3 level. High RSE values (and thus low BDE(B? H) values) have been found for borane complexes of a variety of five‐ and six‐membered ring heterocycles. Variations of RSE values have been correlated with the strength of Lewis acid–Lewis base complex formation at the boryl radical stage. The analysis of charge‐ and spin‐density distributions shows that spin delocalization in the boryl radical complexes constitutes one of the mechanisms of radical stabilization.  相似文献   

2.
The synthesis and physical characterization of a new class of N‐heterocycle–boryl radicals is presented, based on five membered ring ligands with a N(sp2) complexation site. These pyrazole–boranes and pyrazaboles exhibit a low bond dissociation energy (BDE; B?H) and accordingly excellent hydrogen transfer properties. Most importantly, a high modulation of the BDE(B?H) by the fine tuning of the N‐heterocyclic ligand was obtained in this series and could be correlated with the spin density on the boron atom of the corresponding radical. The reactivity of the latter for small molecule chemistry has been studied through the determination of several reaction rate constants corresponding to addition to alkenes and alkynes, addition to O2, oxidation by iodonium salts and halogen abstraction from alkyl halides. Two selected applications of N‐heterocycle–boryl radicals are also proposed herein, for radical polymerization and for radical dehalogenation reactions.  相似文献   

3.
The general strategies to stabilize a boryl radical involve single electron delocalization by π-system and the steric hinderance from bulky groups. Herein, a new class of boryl radicals is reported, with intramolecular mixed-valent B(III)Br-B(II) adducts ligated by a cyclic (alkyl)(amino)carbene (CAAC). The radicals feature a large spin density on the boron center, which is ascertained by EPR spectroscopy and DFT calculations. Structural and computational analyses revealed that the stability of radical species was assisted by the CAAC ligand and a weak but significant B(III)Br-B(II) interaction, suggesting a cooperative avenue for stabilization of boryl radicals. Two-electron reduction of these new boryl radicals provides C−H insertion products via a borylene intermediate.  相似文献   

4.
The reaction of the 2‐(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4‐R‐C6H4)2BX (R=H, X=Br; R=CH3, X=Cl; R=CF3, X=Cl) afforded the NHC‐stabilized borenium cations 10 a – c . Cyclic voltammetry revealed a linear correlation between the Hammett parameter σ p of the para substituent and the half‐wave potential. Chemical reduction with decamethylcobaltocene, [(C5Me5)2Co], furnished the corresponding radicals 11 a – c ; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a – c , with large hyperfine coupling constants to the boron isotopes 11B and 10B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR2) revealed for 11 a – c a spin density ratio (BR2/NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X‐ray diffraction analysis.  相似文献   

5.
Utilizing a cyclic (alkyl)(amino)carbene (CAAC) as a ligand, neutral CAAC‐stabilized radicals containing a boryl functionality could be prepared by reduction of the corresponding haloborane adducts. The radical species with a duryl substituent was fully characterized by single‐crystal X‐ray structural analysis, EPR spectroscopy, and DFT calculations. Compared to known neutral boryl radicals, the isolated radical species showed larger spin density on the boron atom. Furthermore, the compound that was isolated is extraordinarily stable to high temperatures under inert conditions, both in solution and in the solid state. Electrochemical investigations of the radical suggest the possibility to generate a stable formal boryl anion species.  相似文献   

6.
Radical borylation using N‐heterocyclic carbene (NHC)‐BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo‐ and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC‐boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC‐boryl radicals enabled by photoredox catalysis. NHC‐boryl radicals are generated via a single‐electron oxidation and subsequently undergo cross‐coupling with the in‐situ‐generated radical anions to yield gem‐difluoroallylboronates. A photoredox‐catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC‐boryl radicals through a single‐electron‐transfer pathway.  相似文献   

7.
One‐electron oxidation of 1,4,2,5‐diazadiborinine 1 has been studied. While the reaction of 1 a bearing phenyl groups on the B atoms with AgAl{OC(CF3)3}4 afforded a complex mixture, the same oxidation reaction with 1 b featuring bulky mesityl substituents on the B atoms rendered the corresponding cation radical 2 b as an isolable species. X‐ray diffraction analysis, EPR spectroscopy, and DFT calculations of 2 b revealed the delocalization of the unpaired electron over the entire π‐system of 2 b , as well as a large spin density (0.76 in total) on the two equivalent boron atoms. The chemical trapping reaction of 2 b with p‐benzoquinone and triphenyltin hydride afforded the dicationic species 3 containing two newly formed B?O bonds and the monocationic product 2b‐H containing a B?H bond, respectively, thus confirming the boron‐centered radical reactivity of 2 b .  相似文献   

8.
Lewis base adducts of tetra‐alkoxy diboron compounds, in particular bis(pinacolato)diboron (B2pin2), have been proposed as the active source of nucleophilic boryl species in metal‐free borylation reactions. We report the isolation and detailed structural characterization (by solid‐state and solution NMR spectroscopy and X‐ray crystallography) of a series of anionic adducts of B2pin2 with hard Lewis bases, such as alkoxides and fluoride. The study was extended to alternative Lewis bases, such as acetate, and other diboron reagents. The B(sp2)–B(sp3) adducts exhibit two distinct boron environments in the solid‐state and solution NMR spectra, except for [(4‐tBuC6H4O)B2pin2]?, which shows rapid site exchange in solution. DFT calculations were performed to analyze the stability of the adducts with respect to dissociation. Stoichiometric reaction of the isolated adducts with two representative series of organic electrophiles—namely, aryl halides and diazonium salts—demonstrate the relative reactivities of the anionic diboron compounds as nucleophilic boryl anion sources.  相似文献   

9.
(o-Phenylenediamino)borylstannanes were newly synthesized to achieve radical boryl substitutions of a variety of alkyl radical precursors. Dehalogenative, deaminative, decharcogenative, and decarboxylative borylations proceeded in the presence of a radical initiator to give the corresponding organic boron compounds. Radical clock experiments and computational studies have provided insights into the mechanism of the homolytic substitution (SH2) of the borylstannanes with alkyl radical intermediates. DFT calculation disclosed that the phenylenediamino structure lowered the LUMO level including the vacant p-orbital on the boron atom to enhance the reactivity to alkyl radicals in SH2. Moreover, C(sp3)-H borylation of THF was accomplished using the triplet state of xanthone.  相似文献   

10.
The synthesis and reactivity of mono‐ and bis‐S‐xanthyl NHC‐boranes is reported. The new NHC‐boranes are prepared through nucleophilic exchange at boron from either mono‐ or bis‐triflyl NHC‐boranes, themselves obtained by protolysis of the NHC‐BH3 starting compounds. The B?H bond of the S‐xanthyl NHC‐boranes can be cleaved both homolytically and heterolytically, albeit the latter is more synthetically useful. The S‐xanthyl NHC‐boranes can reduce both aldehydes and imines. The B?S bond can also be cleaved homolytically. Under UV irradiation, the S‐xanthyl NHC‐boranes generate NHC‐boryl radicals that can initiate radical polymerizations of acrylates.  相似文献   

11.
Persistent radicals undergo hydrogen atom abstraction reactions with a great variety of substrates, but not with dihydrogen. It has now been found that the TEMPO radical splits dihydrogen under mild conditions in the presence of the strong bulky B(C6F5)3 boron Lewis acid. The reaction is thought to proceed by a typical frustrated Lewis pair mechanism with the TEMPO radical acting as the active Lewis base. The reaction was analyzed by DFT, which indicates that no significant spin density on the hydrogen atoms is accumulated along the H2 splitting reaction path.  相似文献   

12.
A series of in situ formed alkenyl diboronate complexes from alkenyl Grignard reagents (commercially available or prepared from alkenyl bromides and Mg) with B2Pin2 (bis(pinacolato)diboron) react with diverse alkyl halides by a Ru photocatalyst to give various gem‐bis(boryl)alkanes. Alkyl radicals add efficiently to the alkenyl diboronate complexes, and the adduct radical anions undergo radical‐polar crossover, specifically, a 1,2‐boryl‐anion shift from boron to the α‐carbon sp2 center. This transformation shows good functional‐group compatibility and can serve as a powerful synthetic tool for late‐stage functionalization in complex compounds. Measurements of the quantum yield reveal that a radical‐chain mechanism is operative in which the alkenyl diboronates acts as reductive quencher for the excited state of the photocatalyst.  相似文献   

13.
A highly bent triarylborane, 9‐boratriptycene, was generated in solution by selective protodeboronation of the corresponding tetra‐aryl boron ate complex with the strong Brønsted acid HNTf2. The iptycene core confers enhanced Lewis acidity to 9‐boratriptycene, making it unique in terms of structure and reactivity. We studied the stereoelectronic properties of 9‐boratriptycene by quantifying its association with small N‐ and O‐centered Lewis bases, as well as with sterically hindered phosphines. The resultant Lewis adducts exhibited unique structural, spectroscopic, and photophysical properties. Beyond the high pyramidalization of the 9‐boratriptycene scaffold and its low reorganization energy upon Lewis base coordination, quantum chemical calculations revealed that the absence of π donation from the triptycene aryl rings to the boron vacant pz orbital is one of the main reasons for its high Lewis acidity.  相似文献   

14.
The P‐coordinated boryl radical [Ph2P(naphthyl)BMes]. (Mes=mesityl) was prepared by (electro)chemical reduction of the corresponding borenium salt or bromoborane. Electron paramagnetic resonance (EPR) analysis in solution and DFT calculations indicate large spin density on boron (60–70 %) and strong P–B interactions (P→B σ donation and B→P negative hyperconjugation). The radical is persistent in solution and participates in a Gomberg‐type dimerization process. The associated quinoid‐type dimer has been characterized by single‐crystal X‐ray diffraction.  相似文献   

15.
The molecular geometry and electronic structure of styrene and methyl methacrylate as well as corresponding radicals formed by the addition of a methyl radical to the β‐carbon of the monomer were determined using the density functional theory at the B3LYP/6‐311+G** level. Results were in good agreement with the theoretical and experimental data available in the literature. Full optimized molecular geometry of methyl methacrylate showed the trans form of the molecule. Monomers transformed into corresponding radicals preserved the main structural parameters of substituents whereas bonds between substituents and adjacent radical carbon atoms shortened. It was found that the correlation of the theoretically calculated electronic parameters for monomers and the corresponding radicals with the Q and e parameters from the Alfrey–Price scheme strongly depends on the level of calculations. Application of the higher level of theory including the correlation effect changes the relationship discussed in the literature between energy (EY) of formation of a radical from the monomer, the experimental e parameter, and the Q parameter and monomer/average electronegativity, respectively. The total atomic spin density at the radical carbon atom correlated with the radical parameter P in the Alfrey–Price scheme was computed to be higher for the methoxycarbonyl‐1‐methyl‐ethyl radical when compared with the 1‐phenyl‐propyl radical. These values are in good agreement with the localization energies and the P values determined from the kinetic measurements for macroradicals ending with styrene and methyl methacrylate monomer units. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3761–3769, 2001  相似文献   

16.
17.
Despite the synthesis of a boryl anion by Yamashita et al. in 2006, compounds that show boron‐centered nucleophilicity are still rare and sought‐after synthetic goals. A number of such boryl anions have since been prepared, two of which were reported to react with methyl iodide in apparent nucleophilic substitution reactions. One of these, a borolyl anion based on the borole framework, has now been found to display single‐electron‐transfer (SET) reactivity in its reaction with triorganotetrel halides, which was confirmed by the isolation of the first neutral borole‐based radical. The radical was characterized by elemental analysis, single‐crystal X‐ray crystallography, and EPR spectroscopy, and has implications for the understanding of boron‐based nucleophilic behavior and the emergent role of boron radicals in synthesis. This radical reactivity was also exploited in the synthesis of compounds with rare B? Sn and B? Pb bonds, the latter of which was the first isolated and structurally characterized compound with a “noncluster” B? Pb bond.  相似文献   

18.
Boron compounds have been traditionally regarded as "Lewis acids" preferring to accept electrons rather than donate them in the course of their reactions but current examples of unusual reactivity between tricoordinated boranes and electrophilic sites suggest a new conceptual context for the boryl moieties, based on their nucleophilic character which can be enhanced depending on the substituents on boron.  相似文献   

19.
Ansa‐aminoborane 1 (ortho‐TMP? C6H4? BH2; TMP=2,2,6,6‐tetramethylpiperid‐1‐yl), a frustrated Lewis pair with the smallest possible Lewis acidic boryl site (? BH2), is prepared. Although it is present in quenched forms in solution, and BH2 represents an acidic site with reduced hydride affinity, 1 reacts with H2 under mild conditions producing ansa‐ammonium trihydroborate 2 . The thermodynamic and kinetic features as well as the mechanism of this reaction are studied by variable‐temperature NMR spectroscopy, spin‐saturation transfer experiments, and DFT calculations, which provide comprehensive insight into the nature of 1 .  相似文献   

20.
Fifteen second-generation NHC-ligated boranes with aryl and alkyl substituents on boron were prepared, and their radical chemistry was explored by electron paramagnetic resonance (EPR) spectroscopy and calculations. Hydrogen atom abstraction from NHC-BH(2)Ar groups produced boryl radicals akin to diphenylmethyl with spin extensively delocalized across the NHC, BH, and aryl units. All of the NHC-B·HAr radicals studied abstracted Br-atoms from alkyl bromides. Radicals with bulky N,N'-dipp substituents underwent dimerization about 2 orders of magnitude more slowly than first-generation NHC-ligated trihydroborates. The evidence favored head-to-head coupling yielding ligated diboranes. The first ligated diboranyl radical, with a structure intermediate between that of ligated diboranes and diborenes, was spectroscopically characterized during photolysis of di-t-butyl peroxide with N,N'-di-t-butyl-imidazol-2-ylidene phenylborane. The reactive site of B-alkyl-substituted NHC-boranes switched from the boron center to the alkyl substituent for both linear and branched alkyl groups. The β-borylalkyl radicals obtained from N,N'-dipp-substituted boranes underwent exothermic β-scissions with production of dipp-Imd-BH(2)· radicals and alkenes. The reverse additions of NHC-boryl radicals to alkenes are probably endothermic for alkyl-substituted alkenes, but exothermic for conjugated alkenes (addition of an NHC-boryl radical to 1,1-diphenylethene was observed). A cyclopropylboryl radical was observed, but, unlike other α-cyclopropyl-substituted radicals, this showed no propensity for ring-opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号