首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Nothing to sm(Ir)k at : Under appropriate reaction conditions, iridium hydride catalysts promote the isomerization of primary allylic alcohols. The best catalysts, like (R)‐ 1 (P green, O red, N blue, Ir yellow), deliver the desired chiral aldehydes with excellent enantioselectivity and good yields. Mechanistic hypotheses have been developed on the basis of preliminary investigations.

  相似文献   


3.
A one‐pot procedure for the direct conversion of racemic allylic alcohols to enantiomerically enriched saturated alcohols is presented. The tandem‐isomerization/asymmetric transfer hydrogenation process is efficiently catalyzed by [{Ru(p‐cymene)Cl2}2] in combination with the α‐amino acid hydroxyamide ligand 1 , and performed under mild conditions in a mixture of ethanol and THF. The saturated alcohol products are isolated in good to excellent chemical yields and in enantiomeric excess up to 93 %.  相似文献   

4.
We have evaluated a wide range of iridium complexes derived from chiral oxazoline‐based N,P ligands for the asymmetric hydrogenation of imines and identified three efficient catalysts. These catalysts are readily synthesized by straightforward convenient routes and are air and moisture stable. In the reduction of acetophenone N‐arylimines and related acyclic substrates, excellent enantioselectivities (up to 96 % ee) were obtained by using 0.1–0.5 mol % of catalyst at ?20 °C and 5–50 bar hydrogen pressure.  相似文献   

5.
6.
Optically active tertiary amines are readily prepared by iridium‐catalyzed asymmetric hydrogenation of unfunctionalized enamines (see scheme). The best enantioselectivities with >90 % ee were obtained with N‐aryl‐ and N‐benzyl‐substituted enamines with a terminal double bond. The hydrogenation of enamines derived from cyclic ketones, which has not been reported yet with other catalysts, gave enantiomeric excesses of up to 87 %.

  相似文献   


7.
Few allylic electrophiles containing two different substituents at a single allyl terminus and none in which one of the two substituents is a heteroatom, have been shown previously to react with iridium catalysts to form substitution products. We report that iridium‐catalysts are uniquely suited to form tertiary allylic fluorides enantioselectively by the addition of a diverse range of carbon‐centered nucleophiles at the fluorine‐containing terminus of 3‐fluoro‐substituted allylic esters. The products contain tertiary stereogenic centers bearing a single fluorine, which are isosteric with common tertiary stereocenters containing a single hydrogen. Computational studies reveal the principal steric interactions influencing the stability of endo and exo π‐allyl intermediates formed from 3,3‐disubstituted allylic electrophiles.  相似文献   

8.
9.
10.
11.
12.
A method for the stereoselective synthesis of 2,6‐disubstituted piperidines has been developed that is based on the use of an intramolecular iridium‐catalyzed allylic substitution as a configurational switch. The procedure allows the preparation of 2‐vinylpiperidines with enantiomeric excesses (ee) of greater than 99 %. As applications, total syntheses of piperidine alkaloids have been elaborated, most often by using Ru‐catalyzed cross‐metatheses as a key step for introduction of a side chain. Asymmetric total syntheses of the prosopis alkaloids (+)‐prosopinine, (+)‐prosophylline, (+)‐prosopine, and of the dendrobate alkaloid (+)‐241D and its C6 epimer are described.  相似文献   

13.
An Ir‐catalyzed intermolecular asymmetric dearomatization reaction of β‐naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β‐naphthalenone compounds bearing an all‐carbon‐substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee . The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.  相似文献   

14.
The first iridium‐catalyzed intramolecular asymmetric allylic dearomatization reaction of pyridines and pyrazines has been realized. 2,3‐Dihydroindolizine and 6,7‐dihydropyrrolo[1,2‐a]pyrazine derivatives were obtained with excellent yields and enantioselectivity. This methodology features dearomatization by direct N‐allylic alkylation of pyridines or pyrazines under mild reaction conditions.  相似文献   

15.
Allylic amination, directly from alcohols, has been demonstrated without any Lewis acid activators using an efficient and regiospecific molecular iron catalyst. Various amines and alcohols were employed and the reaction proceeded through the oxidation/reduction (redox) pathway. A direct one‐step synthesis of common drugs, such as cinnarizine and nafetifine, was exhibited from cinnamyl alcohol that produced water as side product.  相似文献   

16.
Pressing the configurational switch : Use of enantiomeric Ir catalysts allows the vinylpiperidine building blocks 2 a and 2 b to be synthesized with high selectivity. Total syntheses of the dendrobate alkaloid (+)‐241 D, its C6‐epimer, and a spruce alkaloid are presented as applications.

  相似文献   


17.
The first Ir‐catalyzed enantioselective allylation of trisubstituted allylic electrophiles has been developed. Through modification of the leaving group of allylic electrophiles, we found that trisubstituted allylic phosphates are suitable electrophiles for asymmetric allylation. The reaction of allylic phosphates with enol silanes derived from dioxinones gave allylated products in good yields with high enantioselectivities.  相似文献   

18.
The preparation of chiral alcohols and amines by using iridium catalysis is reviewed. The methods presented include the reduction of ketones or imines by using hydrogen (hydrogenations), isopropanol, formic acid, or formate (transfer hydrogenations). Also dynamic and oxidative kinetic resolutions leading to chiral alcohols and amines are included. Selected literature reports from early contributions to December 2012 are discussed.  相似文献   

19.
The first iridium‐catalyzed intermolecular asymmetric allylic amination reaction with 2‐hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N‐substituted 2‐pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2‐hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98 % yield and 99 % ee.  相似文献   

20.
An efficient copper‐catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni’s reagent has been developed. This strategy, accompanied by a double‐bond migration, leads to various branched CF3‐substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β‐H elimination is prohibited, CF3‐containing oxetanes are isolated as the sole product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号