首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Metal–cage and intracluster bonding was studied in detail by quantum theory of atoms in molecules (QTAIM) for the four major classes of endohedral metallofullerenes (EMFs), including monometallofullerenes Ca@C72, La@C72, M@C82 (M=Ca, Sc, Y, La), dimetallofullerenes Sc2@C76, Y2@C82, Y2@C79N, La2@C78, La2@C80, metal nitride clusterfullerenes Sc3N@C2n (2n=68, 70, 78, 80), Y3N@C2n (2n=78, 80, 82, 84, 86, 88), La3N@C2n (2n=88, 92, 96), metal carbide clusterfullerenes Sc2C2@C68, Sc2C2@C82, Sc2C2@C84, Ti2C2@C78, Y2C2@C82, Sc3C2@C80, as well as Sc3CH@C80 and Sc4Ox@C80 (x=2, 3), that is, 42 EMF molecules and ions in total. Analysis of the delocalization indices and bond critical point (BCP) indicators such as Gbcp/ρbcp, Hbcp/ρbcp, and |Vbcp|/Gbcp, revealed that all types of bonding in EMFs exhibit a high degree of covalency, and the ionic model is reasonable only for the Ca‐based EMFs. Metal–metal bonds with negative values of the electron‐density Laplacian were found in Y2@C82, Y2@C79N, Sc4O2@C80, and anionic forms of La2@C80. A delocalized nature of the metal–cage bonding results in a topological instability of the electron density in EMFs with an unpredictable number of metal–cage bond paths and large elipticity values.  相似文献   

2.
The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed‐metal Sc–Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4C2@C80 (the most abundant EMF from this synthesis), Sc3C2@C80, isomers of Sc2C2@C82, and the family Sc2C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. The Sc–Ti/CH4 system produces the mixed‐metal Sc2TiC@C2 n (2 n=68, 78, 80) and Sc2TiC2@C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition‐metal‐containing endohedral fullerenes, Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80, and Sc2TiC2@Ih‐C80, were characterized by NMR spectroscopy. The structure of Sc2TiC@Ih‐C80 was also determined by single‐crystal X‐ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2TiC‐ and Sc2TiC2‐containing clusterfullerenes have Ti‐localized LUMOs. Encapsulation of the redox‐active Ti ion inside the fullerene cage enables analysis of the cluster–cage strain in the endohedral fullerenes through electrochemical measurements.  相似文献   

3.
A systematic density functional theory investigation has been carried out to explore the possible structures of Sc2C80 at the BMK/6‐31G(d) level. The results clearly show that Sc2@C80Ih, Sc2@C80D5h, and Sc2C2@C78C2v can be identified as three isomers of Sc2C80 metallofullerene with the lowest energy. Frontier molecular orbital analysis indicates that the two Sc2@C80 isomers have a charge state as (Sc3+)2@C806?and the Sc2C2@C78 has a charge state of (Sc3+)2C22?@C784?. Moreover, the metal‐cage covalent interactions have been studied to reveal the dynamics of endohedral moiety. The vertical electron affinity, vertical ionization potential, infrared spectra and 13C nuclear magnetic resonance spectra have been also computed to further disclose the molecular structures and properties.  相似文献   

4.
The chemical properties of carbide‐cluster metallofullerenes (CCMFs) remain largely unexplored, although several new members of CCMFs have been discovered recently. Herein, we report the reaction between Sc2C2@C3v(8)‐C82, which is viewed as a prototypical CCMF because of its high abundance, and 3‐triphenylmethyl‐5‐oxazolidinone ( 1 ) to afford the corresponding pyrrolidino derivative Sc2C2@C3v(8)‐C82(CH2)2NTrt ( 2 ; Trt=triphenylmethyl). Single‐crystal X‐ray crystallography studies of 2 revealed that the reaction takes place at a [6,6]‐bond junction, which is directly over the encapsulated C2 unit and is far from either of the two scandium atoms. On the basis of theoretical calculations and by considering previously reports, we have found that a hexagonal carbon ring on the cage of Sc2C2@C3v(8)‐C82 is highly reactive toward different reagents due to the overlap of high p‐orbital axis vector (POAV) angles and large LUMO coefficients. We propose that this highly concentrated area of reactivity is generated by the encapsulation of the Sc2C2 cluster because this region is absent from the empty fullerene C3v(8)‐C82. Moreover, the absorption and electrochemical results confirm that derivative 2 is more stable than pristine Sc2C2@C3v(8)‐C82, thus illuminating its potential applications.  相似文献   

5.
The complete set of 6332 classical isomers of the fullerene C68 as well as several non‐classical isomers is investigated by PM3, and the data for some of the more stable isomers are refined by the DFT‐based methods HCTH and B3LYP. C2:0112 possesses the lowest energy of all the neutral isomers and it prevails in a wide range of temperatures. Among the fullerene ions modeled, C682?, C684? and C686?, the isomers C682?(Cs:0064), C684?(C2v:0008), and C686?(D3:0009) respectively, are predicted to be the most stable. This reveals that the pentagon adjacency penalty rule (PAPR) does not necessarily apply to the charged fullerene cages. The vertical electron affinities of the neutral Cs:0064, C2v:0008, and D3:0009 isomers are 3.41, 3.29, and 3.10 eV, respectively, suggesting that they are good electron acceptors. The predicted complexation energy, that is, the adiabatic binding energy between the cage and encapsulated cluster, of Sc2C2@C68(C2v:0008) is ?6.95 eV, thus greatly releasing the strain of its parent fullerene (C2v:0008). Essentially, C68 fullerene isomers are charge‐stabilized. Thus, inducing charge facilitates the isolation of the different isomers. Further investigations show that the steric effect of the encaged cluster should also be an important factor to stabilize the C68 fullerenes effectively.  相似文献   

6.
A new cluster fullerene, Sc2O@Td(19151)‐C76, has been isolated and characterized by mass spectrometry, UV/Vis/NIR absorption, 45Sc NMR spectroscopy, cyclic voltammetry, and single‐crystal X‐ray diffraction. The crystallographic analysis unambiguously assigned the cage structure as Td(19151)‐C76, which is the first tetrahedral fullerene cage characterized by single‐crystal X‐ray diffraction. This study also demonstrated that the Sc2O cluster has a much smaller Sc?O?Sc angle than that of Sc2O@Cs(6)‐C82 and the Sc2O unit is fully ordered inside the Td(19151)‐C76 cage. Computational studies further revealed that the cluster motion of the Sc2O is more restrained in the Td(19151)‐C76 cage than that in the Cs(6)‐C82 cage. These results suggest that cage size affects not only the shapes but also the cluster motion inside fullerene cages.  相似文献   

7.
The synthesis and single‐crystal X‐ray structural characterization of the first endohedral metallofullerene to contain a heptagon in the carbon cage are reported. The carbon framework surrounding the planar LaSc2N unit in LaSc2N@Cs(hept)‐C80 consists of one heptagon, 13 pentagons, and 28 hexagons. This cage is related to the most abundant Ih‐C80 isomer by one Stone–Wales‐like, heptagon/pentagon to hexagon/hexagon realignment. DFT computations predict that LaSc2N@Cs(hept)‐C80 is more stable than LaSc2N@D5hC80, and suggests that the low yield of the heptagon‐containing endohedral fullerene may be caused by kinetic factors.  相似文献   

8.
Successful isolation and characterization of a series of Er-based dimetallofullerenes present valuable insights into the realm of metal–metal bonding. These species are crystallographically identified as Er2@Cs(6)-C82, Er2@C3v(8)-C82, Er2@C1(12)-C84, and Er2@C2v(9)-C86, in which the structure of the C1(12)-C84 cage is unambiguously characterized for the first time by single-crystal X-ray diffraction. Interestingly, natural bond orbital analysis demonstrates that the two Er atoms in Er2@Cs(6)-C82, Er2@C3v(8)-C82, and Er2@C2v(9)-C86 form a two-electron-two-center Er−Er bond. However, for Er2@C1(12)-C84, with the longest Er⋅⋅⋅Er distance, a one-electron-two-center Er−Er bond may exist. Thus, the difference in the Er⋅⋅⋅Er separation indicates distinct metal bonding natures, suggesting a distance-dependent bonding behavior for the internal dimetallic cluster. Additionally, electrochemical studies suggest that Er2@C82–86 are good electron donors instead of electron acceptors. Hence, this finding initiates a connection between metal–metal bonding chemistry and fullerene chemistry.  相似文献   

9.
Based on the different oxidation potentials of endohedral fullerenes Sc3N@C80 Ih and D5h and Sc3N@C78, an efficient and useful method that avoids HPLC has been developed for their separation. Selective chemical oxidation of the Sc3N@D5h‐C80 isomer and Sc3N@C78 by using an acetylferrocenium salt [Fe(COCH3C5H4)Cp]+ followed by column chromatographic separation and reduction with CH3SNa resulted in the isolation of pure Sc3N@Ih‐C80, Sc3N@C78, and a mixture of Sc3N@D5h‐C80 and Sc3N@C68.  相似文献   

10.
Like C60, C70 is one of the most representative fullerenes in fullerene science. Even though there are 8149 C70 isomers, only two of them have been found before: the conventional D5h and an isolated pentagon rule (IPR)‐violating C2v(7854). Through the use of quantum chemical methods, we report a new unconventional C70 isomer, C2(7892), which survives in the form of dimetallic sulfide endohedral fullerene Sc2S@C70. Compared with the IPR‐obeying C70 and the C2v(7854) fullerene with three pairs of pentagon adjacencies, the C2(7892) cage violates the isolated pentagon rule and has two pairs of pentagon adjacencies. In Sc2S@C2(7892)‐C70, two scandium atoms coordinate with two pentalene motifs, respectively, presenting two equivalent Sc? S bonds. The strong coordination interaction, along with the electron transfer from the Sc2S cluster to the fullerene cage, results in the stabilization of the non‐IPR endohedral fullerene. The electronic structure of Sc2S@C70 can be formally described as [Sc2S]4+@[C70]4?; however, a substantial overlap between the metallic orbitals and cage orbitals has also been found. Electrochemical properties and electronic absorption, infrared, and 13C NMR spectra of Sc2S@C70 have been calculated theoretically.  相似文献   

11.
Although all the pure‐carbon fullerene isomers above C60 reported to date comply with the isolated pentagon rule (IPR), non‐IPR structures, which are expected to have different properties from those of IPR species, are obtainable either by exohedral modification or by endohedral atom doping. This report describes the isolation and characterization of a new endohedral metallofullerene (EMF), La2@C76, which has a non‐IPR fullerene cage. The X‐ray crystallographic result for the La2@C76/[NiII(OEP)] (OEP=octaethylporphyrin) cocrystal unambiguously elucidated the Cs(17 490)‐C76 cage structure, which contains two adjacent pentagon pairs. Surprisingly, multiple metal sites were distinguished from the X‐ray data, which implies dynamic behavior for the two La3+ cations inside the cage. This dynamic behavior was also corroborated by variable‐temperature 139 La NMR spectroscopy. This phenomenon conflicts with the widely accepted idea that the metal cations in non‐IPR EMFs invariably coordinate strongly with the negatively charged fused‐pentagon carbons, thereby providing new insights into modern coordination chemistry. Furthermore, our electrochemical and computational studies reveal that La2@Cs(17 490)‐C76 has a larger HOMO–LUMO gap than other dilanthanum‐EMFs with IPR cage structures, such as La2@D3h(5)‐C78 and La2@Ih(7)‐C80, which implies that IPR is no longer a strict rule for EMFs.  相似文献   

12.
In terms of density functional theory combined with statistic mechanics computations, we investigated a dimetallic sulfide endohedral fullerene Sc2S@C76 which has been synthesized without any characterization in experiments. Our theoretical study reveals that Sc2S@Td(19151)‐C76 which satisfies the isolated‐pentagon rule (IPR) possesses the lowest energy, followed by three non‐IPR structures (Sc2S@C2v(19138)‐C76, Sc2S@Cs (17490)‐C76, and Sc2S@C1(17459)‐C76). To clarify the relative stabilities of those isomers at high temperatures, enthalpy–entropy interplay has been taken into consideration. Calculation results indicate that three species Sc2S@Td(19151)‐C76, Sc2S@C2v(19138)‐C76, and Sc2S@C1(17459)‐C76 have noticeable molar fractions at the fullerene‐formation temperature region (500–3000K), and the Sc2S@C1(17459)‐C76 with one pentagon pair becomes the most predominant isomer above 1800 K, suggesting that the unexpected non‐IPR structure is thermodynamically favorable at elevated temperatures. In addition, the structural characteristics, electron features, UV‐vis‐NIR adsorptions, and 13C NMR spectra of those three stable structures are introduced to assist experimental identification and characterization in future. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
A large family of dysprosium–scandium (Dy‐Sc) mixed‐metal nitride clusterfullerenes (MMNCFs), DyxSc3?xN@C2n (x=1, 2, 2n=68, 70, 76–86) have been successfully synthesized and isolated. Among these, the C70 and C82‐based MMNCFs are two new cages that have never been isolated for MMNCFs. Synthesis of DyxSc3?xN@C2n was accomplished by the “selective organic solid” route using guanidinium thiocyanate as the nitrogen source, and their isolation was fulfilled by recycling HPLC. UV/Vis‐NIR spectroscopic study indicates that almost all DyxSc3?xN@C2n MMNCFs are kinetically stable fullerenes with optical band gaps beyond 1 eV. This feature is distinctly different to their counterparts Dy3N@C2n (78≤2n≤88), whose for optical band‐gaps are below 1 eV for relatively large cages such as C84 and C86. An FTIR spectroscopic study in combination with DFT calculations enables reasonable assignments of the cage isomeric structures of all isolated DyxSc3?xN@C2n (x=1, 2, 2n=68, 70, 76–86) MMNCFs. The carbon cage size distribution of DyxSc3?xN@C2n (2n=68, 70, 76–86) is compared to the reported Dy3N@C2n (78≤2n≤8) homogeneous NCF and DyxSc3?xN@C2n (78≤2n≤88) MMNCF families, revealing that the medium‐sized Dy metal plays a crucial role on the expanded cage size distribution of MMNCFs. As a result, DyxSc3?xN@C2n MMNCFs are the largest MMNCF family reported to date.  相似文献   

14.
Stimulated by the recent experimental success in production and characterization of YCN@Cs(6)‐C82, the possibility of encapsulating YCN cluster in the C78 fullerene has been performed using density functional theory. Six isomers of YCN@C78 are considered based on six lowest energy C782? isomers. The results reveal that YCN@D3h(24109)‐C78 and YCN@C2v(24107)‐C78, both of which satisfy the isolated‐pentagon rule, present excellent thermodynamic stability with very small energy differences. Moreover, the large HOMO‐LUMO gaps (1.55 and 1.47 eV for YCN@D3h(24109)‐C78 and YCN@C2v(24107)‐C78, respectively) indicate their high kinetic stabilities. Significantly, in both the structures, the encapsulated YCN cluster is triangular, similar to the cases of YCN@Cs(6)‐C82 and TbCN@C2(5)‐C82. In addition, electronic absorption spectra, infrared spectra, and 13C nuclear magnetic resonance spectra of two stable structures have also been explored to further disclose the molecular structures and properties. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc3N@Ih‐C80 and its D5h counterpart Sc3N@D5h‐C80, and the (bio)chemically relevant lutetium‐ and gadolinium‐based M3N@Ih/D5h‐C80 EMFs (M=Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels–Alder cycloaddition of s‐cis‐1,3‐butadiene on all the different bonds of the Ih‐C80 and D5h‐C80 cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc3N@C80. Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D 5h ‐b , which is the most similar to the unique [5,6] bond type in the icosahedral cage, I h ‐a , is the most reactive bond in M3N@D5h‐C80 regardless of M. Sc3N@C80 and Lu3N@C80 give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M=Gd, as previously found in similar metallofullerenes. Calculations also show that the D5h isomer is more reactive from the kinetic point of view than the Ih one in all cases which is in good agreement with experiments.  相似文献   

16.
Trifluoromethylated derivatives of Sc3N@Ih‐C80 and Sc3N@D5h‐C80 were synthesized by the reaction with CF3I at 440 °C. HPLC separation of the mixture of Sc3N@D5h‐C80(CF3)n derivatives resulted in isolation and X‐ray structure determination of Sc3N@D5h‐C80(CF3)16, which represents a precursor of the known Sc3N@D5h‐C80(CF3)18. Among the CF3 derivatives of Sc3N@Ih‐C80, two new isomers of Sc3N@Ih‐C80(CF3)14 ( Sc‐14‐VI and Sc‐14‐VII ) were isolated by HPLC, and their molecular structures were determined by X‐ray diffraction, thus enabling a comprehensive comparison of altogether seven isomers. Two types of addition patterns with different orientations of the Sc3N cluster relative to the Ih‐C80 fullerene cage were established. In particular, Sc‐14‐VII represents a direct precursor of the known Sc3N@Ih‐C80(CF3)16‐ II . All molecular structures exhibit an ordered position of a Sc3N cluster inside the fullerene C80 cage.  相似文献   

17.
Geometrical structures of the investigated endohedral metallofullerenes Sc3N@C2n (2n = 68, 70, 78, and 80) were optimized at the B3LYP/6‐31G* level. The analyses of electronic structures display that the contribution of fullerene cage to the lowest unoccupied molecular orbital decreases as the cage size increases. Based on the optimized structures, the time‐dependent density functional theory combined with the sum‐over‐states method was used to investigate their nonlinear optical properties. Calculated third‐order polarizabilities γ and two‐photon absorption (TPA) cross‐section δ do not present the monotone variation with the size of fullerene cage, with largest γ of 0.48 × 10?34 esu for Sc3N@C78 in static state, and largest δ of 12.374 GM for Sc3N@C70 in the wavelength of 902.5 nm. However, the obtained TPA resonant peaks shift red with the size of fullerene cage. By analyzing the electronic origin of the third‐order optical properties, it is found that the charge transfers from the fullerene cage to the encapsulated Sc3N cluster make important contributions to the studied properties. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
The production, isolation, and spectroscopic characterization of a new Dy3N@C80 cluster fullerene that exhibits three isomers ( 1 – 3 ) is reported for the first time. In addition, the third isomer ( 3 ) forms a completely new C80 cage structure that has not been reported in any endohedral fullerenes so far. The isomeric structures of the Dy3N@C80 cluster fullerene were analyzed by studying HPLC retention behavior, laser desorption time‐of‐flight (LD‐TOF) mass spectrometry, and UV‐Vis‐NIR and FTIR spectroscopy. The three isomers of Dy3N@C80 were all large band‐gap (1.51, 1.33, and 1.31 eV for 1 – 3 , respectively) materials, and could be classified as very stable fullerenes. According to results of FTIR spectroscopy, the Dy3N@C80 (I) ( 1 ) was assigned to the fullerene cage C80:7 (Ih), whereas Dy3N@C80 (II) ( 2 ) had the cage structure of C80:6 (D5h). The most probable cage structure of Dy3N@C80 (III) ( 3 ) was proposed to be C80:1 (D5d). The significant differences between Dy3N@C80 and other reported M3N@C80 (M=Sc, Y, Gd, Tb, Ho, Er, Tm) cluster fullerenes are discussed in detail, and the strong influence of the metal on the nitride cluster fullerene formation is concluded.  相似文献   

19.
The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes Ih‐Sc3N@C80 and Ih‐Y3N@C80 connected to an electron‐donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3‐dipolar cycloaddition reactions of azomethine ylides and Bingel–Hirsch‐type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y3N@C80‐based dyads and the [5,6] regioisomers in the case of Sc3N@C80‐based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]‐Y3N@C80‐based dyads, whereas the [5,6]‐Sc3N@C80‐based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl–Sc3N@C80‐fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron‐transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C60 dyad.  相似文献   

20.
The electronically unsaturated dirhenium complex [Re2(CO)8(μ‐H)(μ‐Ph)] ( 1 ) has been found to exhibit aromatic C?H activation upon reaction with N,N‐diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ‐H)(μ‐η1‐NEt2C6H4)] ( 2 ), [Re2(CO)8(μ‐H)(μ‐η2‐1,2‐C10H7)] ( 3 ), and [D6]‐ 1 , respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C?H bond‐activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号