首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work the surface of LiNi\begin{document}$_{0.5}$\end{document}Mn\begin{document}$_{1.5}$\end{document}O\begin{document}$_{4}$\end{document} (LMN) particles is modified by Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document} coating through a simple wet grinding method, the electronic conductivity is significantly improved from 1.53\begin{document}$\times$\end{document}10\begin{document}$^{-7}$\end{document} S/cm to 3.15\begin{document}$\times$\end{document}10\begin{document}$^{-5}$\end{document} S/cm after 2.6 wt% Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document} coating. The electrochemical test results indicate that Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document} coating dramatically enhances both rate performance and cycling capability (at 55 ℃) of LNM. Among the samples, 2.6 wt% Mn\begin{document}$_{3}$\end{document}O\begin{document}$_{4}$\end{document}-coated LNM not only exhibits excellent rate capability (a large capacity of 108 mAh/g at 10 C rate) but also shows 78% capacity retention at 55 ℃ and 1 C rate after 100 cycles.  相似文献   

3.
LiNi0.5Mn1.5O4 is regarded as a promising cathode material to increase the energy density of lithium‐ion batteries due to the high discharge voltage (ca. 4.7 V). However, the interface between the LiNi0.5Mn1.5O4 cathode and the electrolyte is a great concern because of the decomposition of the electrolyte on the cathode surface at high operational potentials. To build a stable and functional protecting layer of Li3PO4 on LiNi0.5Mn1.5O4 to avoid direct contact between the active materials and the electrolyte is the emphasis of this study. Li3PO4‐coated LiNi0.5Mn1.5O4 is prepared by a solid‐state reaction and noncoated LiNi0.5Mn1.5O4 is prepared by the same method as a control. The materials are fully characterized by XRD, FT‐IR, and high‐resolution TEM. TEM shows that the Li3PO4 layer (<6 nm) is successfully coated on the LiNi0.5Mn1.5O4 primary particles. XRD and FT‐IR reveal that the synthesized Li3PO4‐coated LiNi0.5Mn1.5O4 has a cubic spinel structure with a space group of Fd$\bar 3$ m, whereas noncoated LiNi0.5Mn1.5O4 shows a cubic spinel structure with a space group of P4332. The electrochemical performance of the prepared materials is characterized in half and full cells. Li3PO4‐coated LiNi0.5Mn1.5O4 shows dramatically enhanced cycling performance compared with noncoated LiNi0.5Mn1.5O4.  相似文献   

4.
Butyric anhydride (BA) is used as an effective functional additive to improve the electrochemical performance of a high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode. In the presence of 0.5 wt % BA, the capacity retention of a LNMO/Li cell is significantly improved from 15.3 to 88.4 % after 200 cycles at 1 C. Furthermore, the rate performance of the LNMO/Li cell is also effectively enhanced, and the capacity goes up to 112 mAh g−1 even at 5 C, which is considerably higher than that of a LNMO/Li cell in electrolyte without BA additive (95.4 mAh g−1 at 5 C). Linear sweep voltammetry and cyclic voltammetry results reveal that the BA additive can be preferentially oxidized to construct a stable cathode electrolyte interphase (CEI) film on the LNMO cathode. Subsequently, the BA-derived CEI film can alleviate the decomposition of the electrolyte and the dissolution of Mn and Ni ions from the LNMO cathode as well as maintain the structural stability of LNMO during the cycling process; this leads to outstanding electrochemical performance. Thus, this work provides an effective and low-cost functional electrolyte for high-voltage LNMO-based LIBs.  相似文献   

5.
层状LiNi0.5Mn0.5O2正极材料的优化合成及电化学性能   总被引:1,自引:0,他引:1  
闻雷  其鲁  徐国祥 《化学通报》2006,69(4):267-271
采用沉淀法首先得到了Ni0.5Mn0.5(OH)2沉淀物,以其为原料与LiOH反应制备了LiNi0.5Mn0.5O2正极材料。采用XRD、SEM、充放电测试等研究了其结构与电化学性能,同时研究了Li过量时对材料电化学性能和结构的影响。SEM分析表明,Ni0.5Mn0.5(OH)2与LiNi0.5Mn0.5O2产物均为微小晶粒团聚成的颗粒。LiNi0.5Mn0.5O2材料在2.5~4.4V电位区间内,首次放电容量为130mAh/g,0.2C倍率下,50次循环后的容量保持率为87.8%。锂过量有助于形成良好的层状结构材料,并能显著提高材料的比容量和循环性能,Li1.1Ni0.5Mn0.5O2的首次放电容量为149mAh/g,0.2C倍率下,50次循环后的容量保持率为92.6%。  相似文献   

6.
尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)因制备成本低、 放电平台高及循环寿命长等优点, 越来越多地应用于大型储能设备、 能量转换设备、 动力汽车等领域. 然而LiNi0.5Mn1.5O4在高电压(5 V)充电状态下电解液易分解, 从而导致比容量降低以及循环性能衰退. 针对以上问题, 采用水热法制备磷酸钐(SmPO4)表面包覆改性LiNi0.5Mn1.5O4正极材料, 研究了SmPO4包覆量对LiNi0.5Mn1.5O4材料电化学性能的影响. 结果表明, 当SmPO4包覆量为0.5%(质量分数)时, 改性材料(LNMO@SP-0.5)的电化学性能最优, 在0.2C和5C倍率下的放电比容量分别为129.2和90.9 mA?h/g, 而未包覆的材料Pristine LNMO的放电比容量分别仅有114.2和77.7 mA?h/g. 在常温1C倍率下循环200次后, LNMO@SP-0.5的容量保持率为93.4%, 而Pristine LNMO的容量保持率仅为86.6%. 这归因于SmPO4包覆能够有效缓解LiNi0.5Mn1.5O4材料与电解液之间的副反应, 降低电极的极化程度和电荷转移电阻, 增加了Li+的扩散系数.  相似文献   

7.
8.
随着新能源电动汽车和大容量储能的快速发展,亟需开发高能量密度、高功率密度的锂离子电池。镍锰酸锂(LiNi0.5Mn1.5O4)由于具有高电压平台(4.7V)、较高的能量密度和功率密度、资源丰富、成本低等优点,被认为是最具潜力的锂离子电池正极材料之一。然而,在高温条件下,LiNi0.5Mn1.5O4会与电解液发生严重的界面副反应,导致循环性能变差,这严重制约了其商业化进程。因此,改善LiNi0.5Mn1.5O4的高温特性成为锂离子电池领域的研究热点之一。本文对近期LiNi0.5Mn1.5O4材料相关研究的主要成果进行综述,以LiNi0.5Mn1.5O4的基本特性和现存挑战入手,着重关注离子掺杂、表面包覆和表面掺杂等策略提升材料的高温性能,并为后续研究提出建议和展望。  相似文献   

9.
Li3PO4包覆LiMn2O4正极材料的结构表征和电化学性能   总被引:1,自引:0,他引:1  
李敏  李荣华  王文继 《化学研究》2007,18(4):98-101
采用共沉淀法在尖晶石LiMn2O4颗粒表面包覆Li3PO4.XRD、SEM研究结果表明,包覆后的材料仍为尖晶石结构,粒径均匀.电化学性能测试表明,Li3PO4包覆层的存在,减少了正极材料与电解液的直接接触,抑制了高温下电解液对LiMn2O4材料的侵蚀,从而有效改善了高温下材料的循环性能.在40℃时,包覆样品的比容量衰减率都低于未包覆样品,其中包覆1%Li3PO4的样品的初始比容量为110.4mAh/g,50次循环后比容量为84.1mAh/g.  相似文献   

10.
研究锂离子电池电极材料中的化学结构、尤其是Li元素的分布和过渡金属元素的价态分布对理解锂离子电池的电池性能具有重要的意义。尽管电子能量损失谱(EELS)具有对轻元素敏感的特点,但利用EELS观察锂离子电池正极材料中Li这一周期表中最轻的固体元素一直是个挑战。这不仅是由于EELS谱中锂K边与过渡金属M边存在部分重叠,还由于锂离子电池材料的尺寸普遍较大使得EELS分析中复散射的影响变大,影响了Li定量分析的准确性。本文以LiNi_(0.5)Mn_(1.5)O_4(LNMO)正极材料为例,利用扫描透射电子显微镜(STEM)下的双电子能量损失谱仪(Dual EELS)谱学成像技术,获取了LNMO中较为精确的Li、Mn及Ni分布图,并进一步获得了Mn/Ni的价态分布图。结合STEM原子序数衬度像表明,LNMO表面1–2nm深度范围内具有富Mn/Ni而缺Li的特征,且表面Mn(+2)相对于体相Mn(+4)的价态偏低。由于低价态的Mn~(2+)在电解液中的溶解是造成电池容量衰减的重要原因,我们的结果表明在LNMO材料合成中消除材料表面富集的低价态Mn~(2+)可能是将来减小其容量衰减的可行途径。  相似文献   

11.
以一定比例的LiCl-LiNO_3为低熔点共混物,采用熔盐法合成了电化学性能良好的LiNi_(0.5)Mn_(1.5)O_4,XRD表征结果显示产物为单一尖晶石相,SEM表征显示出材料良好的晶形,充放电测试结果显示出材料在4.7V平台附近有较大的可逆容量,在4.1V平台附近仅有较少的可逆容量。文章讨论了影响产物晶形和性能的各种因素,建议通过退火、改变合成气氛来消除4.1V平台的产生;研究结果还显示,容量的损失主要发生在第一次放电过程中在高电位区时的电解液的氧化分解.建议通过更换适合在高电位条件下工作的电解液来克服此问题;同时,通过调整低熔点共混物的配比、气氛、反应时间等条件可以实现对产物的结晶形态和大小进行适当的控制,显示了该方法在制备LiNi_(0.5)Mn_(1.5)O_4材料中的应用前景.  相似文献   

12.
Nanosheet‐assembled hierarchical V2O5 hollow microspheres are successfully obtained from V‐glycolate precursor hollow microspheres, which in turn are synthesized by a simple template‐free solvothermal method. The structural evolution of the V‐glycolate hollow microspheres has been studied and explained by the inside‐out Ostwald‐ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V2O5 hollow microspheres with a high surface area of 70 m2 g?1 can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium‐ion batteries, the as‐prepared hierarchical V2O5 hollow spheres deliver a specific discharge capacity of 144 mA h g?1 at a current density of 100 mA g?1, which is very close to the theoretical capacity (147 mA h g?1) for one Li+ insertion per V2O5. In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium‐ion batteries.  相似文献   

13.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

14.
Porous V2O5 nanotubes, hierarchical V2O5 nanofibers, and single‐crystalline V2O5 nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium‐ion batteries (LIBs), the as‐formed V2O5 nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V2O5 nanotubes provided short distances for Li+‐ion diffusion and large electrode–electrolyte contact areas for high Li+‐ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg?1 whilst the energy density remained as high as 201 W h kg?1, which, as one of the highest values measured on V2O5‐based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single‐crystalline V2O5 nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition‐metal‐oxide‐based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

15.
高电压正极材料的应用是提高锂离子电池能量密度的有效手段,然而高电压下正极/电解液界面稳定性成为决定锂离子电池在高电压工作条件下循环性能和安全性能的关键因素,因此高电压下正极/电解液界面具有重要的研究价值. 但是,目前报道的正极/电解液界面的研究中通常使用传统的极片制备方法,这需要引入导电剂和粘结剂,会对后期正极活性物质表面钝化膜的形貌和组分表征带来干扰,甚至造成固体电解质界面(SEI)膜存在的假象,难以获得正极材料与电解液之间界面的本征信息. 这里,我们采用溶胶凝胶旋涂法制备了不含导电剂和粘结剂的镍锰酸锂(LNMO)正极,以其为研究对象,通过扫描电镜(SEM)、原子力显微镜(AFM)和X射线光电子能谱(XPS)技术,结合电化学阻抗谱(EIS)研究了LNMO正极/电解液界面在充放电过程中的结构演变过程以及本征性质. 研究结果显示在充放电过程中,电解液中溶剂和电解质都会参与反应,其中LiPF6的降解主要发生在高电压下,其降解产物在放电过程中又会被反应消耗掉. 它们的降解产物沉积到LNMO正极形成表面膜,该表面膜的主要成分随着电压的不同组分有所不同.  相似文献   

16.
锂离子电池用高电位正极材料LiNi0.5Mn1.5O4   总被引:1,自引:0,他引:1  
由于具有工作电压高、工作范围宽、比能量大、无污染、使用寿命长等优点,锂离子电池具有广阔的应用前景。 然而,目前商业化的锂离子电池仍无法满足电动汽车对电池低成本及高能量密度的要求。研发比能量更高、价格更低廉、寿命更长的锂离子电池成为电动汽车产业发展的关键。尖晶石结构的镍锰酸锂(LiNi0.5Mn1.5O4)具有三维扩散通道,有利于锂离子的传输,且结构稳定;其理论放电比容量可达147 mAh ·g-1。 更重要的是,其电压平台高达4.7 V,具有高的能量密度与功率密度,被认为是未来锂离子电池发展中最具前途与吸引力的正极材料之一。本文介绍了LiNi0.5Mn1.5O4的结构、制备方法、掺杂与包覆改性研究及其应用前景,着重介绍了材料的改性方法并指出LiNi0.5Mn1.5O4目前亟需解决的问题和研究重点。  相似文献   

17.
LiFePO4 is an important cathode material for lithium‐ion batteries. Regardless of the biphasic reaction between the insulating end members, LixFePO4, x≈0 and x≈1, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid‐state electrochemical reactions in which the Li concentrations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long‐range ordering at metastable intermediate eutectic composition of Li2/3FePO4 has now been discovered and its superstructure determined, which reflected predominant polaron crystallization at the Fe sites followed by Li+ redistribution to optimize the Li? Fe interactions.  相似文献   

18.
A simple one‐step direct templating method is developed to synthesize hollow carbon and sandwich‐like ZnO/C/ZnO micro/nanospheres. The type and shell thickness of the final products can be controlled by simply adjusting the reaction temperature. The removal of the templates can also be easily controlled during the synthesis. At a low temperature, the templates remain in the products to form hollow sandwich‐like micro/nanospheres. As the reaction temperature rises, the templates are consumed, which results in the preparation of hollow carbon micro/nanospheres. On the basis of a series of experiments, we propose a simple plausible mechanism to address the original strategy for synthesizing these hollow micro/nanospheres. Furthermore, the sandwich‐like ZnO/C/ZnO nanospheres can be used as the anode in lithium‐ion batteries, exhibiting an extraordinary cyclability and a high coulombic efficiency. This approach can be extended to the synthesis of other hollow spheres. Further investigation is underway in our group.  相似文献   

19.
采用溶胶-凝胶法结合高温热处理制备了锂离子电池用5 V正极材料LiNi0.5Mn1.5O4-xFx(x=0, 0.1). 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和低温氮吸附法(BET)表征了粉体材料的结构、表面形貌和比表面特性, 并以其为正极材料装配电池后, 在85 ℃下高温保存24 h, 测量了保存前后电池的一系列电化学性质变化. 结果表明, 高温保存时电池开路电压会因自放电而较快地下降. 材料的比表面积和氟掺杂显著地影响电池的电压保持能力. 比表面积愈大, 电压保持时间愈短. 氟掺杂有利于提高电池在高温条件下的电压稳定性, 并可以改善电极与电解液之间的界面性质,使充放电性能更好.  相似文献   

20.
Iron fluoride cathodes have been attracting considerable interest due to their high electromotive force value of 2.7 V and their high theoretical capacity of 237 mA h g?1 (1 e? transfer). In this study, uniform iron fluoride hollow porous microspheres have been synthesized for the first time by using a facile and scalable solution‐phase route. These uniform porous and hollow microspheres show a high specific capacity of 210 mA h g?1 at 0.1 C, and excellent rate capability (100 mA h g?1 at 1 C) between 1.7 and 4.5 V versus Li/Li+. When in the range of 1.3 to 4.5 V, stable capacity was achieved at 350 mA h g?1 at a current of 50 mA g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号