首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The formation constants of the nicotinamide H‐complexes with protonic solvents such as water and ethanol in aqueous dimethyl sulfoxide and aqueous ethanol were determined using 13C NMR data. Free Gibbs energy of nicotinamide donor center (nitrogen heteroatom) solvation was calculated. Gibbs energy of entire nicotinamide molecule solvation was shown to be antibate towards Gibbs energy of a pyridine nitrogen solvation. The solvation state of this molecule fragment must be taken into consideration when analyzing the reagents contributions in the thermodynamics of complexation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The reagentless and oxygen‐independent biosensors for ethanol were developed based on the covalent immobilization of alcohol dehydrogenase (ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) on chitosan (CHIT) chains. The CHIT‐NAD+‐ADH structures were adsorbed onto carbon nanotubes (CNT) in order to provide a signal transduction based on the recycling of redox states of NAD cofactor at CNT (detection limit, 8–30 µM ethanol; dynamic range up to 20 mM). The CHIT‐NAD+‐dehydrogenase/CNT hybrid material represents a general approach to the development of dehydrogenases‐based electrochemical biosensors. Interestingly, the CHIT‐NAD+ solutions preserved their enzymatic activity even after five years of storage at 4 °C.  相似文献   

3.
The molecular conformations of three N‐alkyl‐2‐(methylsulfanyl)nicotinamide derivatives, namely N‐cyclohexyl‐2‐(methylsulfanyl)nicotinamide, C13H18N2OS, (I), N‐isopropyl‐2‐(methylsulfanyl)nicotinamide, C10H14N2OS, (II), in which there are two molecules in the asymmetric unit which were chosen to form a hydrogen‐bonded pair, and N‐(2‐hydroxyethyl)‐2‐(methylsulfanyl)nicotinamide dihydrate, C9H12N2O2S·2H2O, (III), are compared with those of four unsubstituted N‐alkylnicotinamide compounds. The substituted compounds show a higher degree of torsion of the pyridine ring with respect to the amide group than do the unsubstituted compounds, with dihedral angles in the range 40–60° for the former and 20–35° for the latter. In (I) and (II), the supramolecular structure is defined by amide‐N to carbonyl‐O chains. In (III), the nicotinamide molecules are linked by hydrogen bonds to two water molecules resulting in two linked chains of rings which form the three‐dimensional network.  相似文献   

4.
Liquid‐assisted grinding (LAG) was used to combine three levels of molecular self‐assembly into a one‐pot mechanochemical approach for the construction of metal–organic materials. The approach was applied for the construction of three adducts of cobalt(II) dibenzoylmethanate with isonicotinamide, nicotinamide and imidazole, to screen for their inclusion compounds. The one‐pot process consists of: i) The coordination‐driven binding of addends to the equatorially‐protected metal ion, resulting in “wheel‐and‐axle”‐shaped complexes; ii) self‐assembly of resulting complexes by way of hydrogen‐bonded synthons to form metal–organic inclusion hosts; iii) in situ inclusion of the grinding liquid in the resulting host. This approach provided quantitatively and within 20 min the known inclusion compounds of the bis(isonicotinamide) adduct in a single synthetic step. Changing the liquid phase in LAG was used to explore the inclusion behaviour of new wheel‐and‐axle adducts with nicotinamide and imidazole, revealing several inclusion compounds, as well as two polymorphs, of the bis(nicotinamide) host. Preliminary results suggest that one‐pot LAG is superior to solution synthesis in screening for metal–organic inclusion compounds. The difference between the methods is rationalised in terms of reactant solubility and solvent competition. In contrast to the nicotinamide adduct, the bis(imidazole) adduct did not form inclusion compounds. The difference in the inclusion properties of the two adducts is rationalised by structural information gathered by single crystal and powder X‐ray diffraction.  相似文献   

5.
Hydrophilic interaction liquid‐chromatography (HILIC) in conjunction with diode array detection has been applied for the separation of selected‐water‐soluble vitamins using an end‐capped HILIC‐diol column. Vitamins with significant biological importance, such as thiamine (B1), riboflavin (B2), nicotinic acid (B3), nicotinamide (B3), pyridoxine (B6), folic acid (B9), cyanocobalamin (B12) and ascorbic acid (vitamin C) were simultaneously separated. Chromatographic conditions including type and percentage of organic modifier in the mobile phase, pH, type and concentration of buffer salt and flow rate were investigated. ACN was shown to offer superior separation for the compounds tested as compared to methanol, isopropanol and THF. Isocratic separation and analysis were achieved for six vitamins (B1, B2, nicotinic acid/nicotinamide, B6 and C) at ACN–H2O 90:10, containing ammonium acetate 10 mM, triethylamine 20 mM, pH 5.0, using a flow rate of 0.8 mL/min, while a gradient was necessary to resolve a mixture of all eight water‐soluble vitamins. The HILIC method was validated and successfully applied to the analysis of a pharmaceutical formulation and an energy drink negating the need for time consuming clean‐up steps.  相似文献   

6.
A redox polymer (PAHA‐Ru), modified electrode exhibited excellent catalytic activity for the electrochemical oxidation of β‐nicotinamide adenine dinucleotide (NADH). PAHA‐Ru was composed of carboxyl groups and ruthenium complexes containing 1,10‐phenanthroline‐5,6‐dione (phen‐dione). The stability of the PAHA‐Ru film was increased by incorporating poly(diallyldimethylammonium chloride) (PDDA) owing to the formation of a polyelectrolyte complex between the PAHA‐Ru and PDDA. The catalytic efficiency of the oxidation of NADH using the PAHA‐Ru/PDDA‐modified electrode was also greater than that using a PAHA‐Ru‐modified electrode. NAD‐dependent alcohol dehydrogenase (ADH) was entrapped in the PAHA‐Ru/PDDA film on the surface of the glassy carbon electrode. Electrochemical oxidation of ethanol using the ADH‐entrapped electrode was also observed.  相似文献   

7.
A non‐natural cofactor and formate driven system for reductive carboxylation of pyruvate is presented. A formate dehydrogenase (FDH) mutant, FDH*, that favors a non‐natural redox cofactor, nicotinamide cytosine dinucleotide (NCD), for generation of a dedicated reducing equivalent at the expense of formate were acquired. By coupling FDH* and NCD‐dependent malic enzyme (ME*), the successful utilization of formate is demonstrated as both CO2 source and electron donor for reductive carboxylation of pyruvate with a perfect stoichiometry between formate and malate. When 13C‐isotope‐labeled formate was used in in vitro trials, up to 53 % of malate had labeled carbon atom. Upon expression of FDH* and ME* in the model host E. coli, the engineered strain produced more malate in the presence of formate and NCD. This work provides an alternative and atom‐economic strategy for CO2 fixation where formate is used in lieu of CO2 and offers dedicated reducing power.  相似文献   

8.
We report a discovery that personal glucose meters (PGMs) can give a dose‐dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one‐step homogeneous assays of many non‐glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target‐induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L ‐lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.  相似文献   

9.
NMR signal amplification by reversible exchange (SABRE) has been observed for pyridine, methyl nicotinate, N‐methylnicotinamide, and nicotinamide in D2O with the new catalyst [Ir(Cl)(IDEG)(COD)] (IDEG=1,3‐bis(3,4,5‐tris(diethyleneglycol)benzyl)imidazole‐2‐ylidene). During the activation and hyperpolarization steps, exclusively D2O was used, resulting in the first fully biocompatible SABRE system. Hyperpolarized 1H substrate signals were observed at 42.5 MHz upon pressurizing the solution with parahydrogen at close to the Earth's magnetic field, at concentrations yielding barely detectable thermal signals. Moreover, 42‐, 26‐, 22‐, and 9‐fold enhancements were observed for nicotinamide, pyridine, methyl nicotinate, and N‐methylnicotinamide, respectively, in conventional 300 MHz studies. This research opens up new opportunities in a field in which SABRE has hitherto primarily been conducted in CD3OD. This system uses simple hardware, leaves the substrate unaltered, and shows that SABRE is potentially suitable for clinical purposes.  相似文献   

10.
A new G‐quadruplex (G‐4)‐directing alkylating agent BMVC‐C3M was designed and synthesized to integrate 3,6‐bis(1‐methyl‐4‐vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G‐4 structures (hybrid‐2 type and antiparallel) and an oncogene promoter, c‐MYC (parallel), were constructed to react with BMVC‐C3M, yielding 35 % alkylation yield toward G‐4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI‐MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross‐linking sites were determined and found to be dependent on G‐4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC‐C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c‐MYC), respectively, as monoalkylated adducts and formed A15–C3M–A21 (H26), G12–C3M–G4 (H24), and G2–C3M–G4/G17 (c‐MYC), respectively, as cross‐linked dialkylated adducts. Collectively, the stability and site‐selective cross‐linking capacity of BMVC‐C3M provides a credible tool for the structural and functional characterization of G‐4 DNAs in biological systems.  相似文献   

11.
A facile method for the synthesis of 2,3‐dihydro‐3‐methylidene‐1H‐isoindol‐1‐one and its derivatives carrying substituent(s) at C(5) and/or C(6) has been developed. The reaction of 2‐formylbenzonitrile ( 1a ) with dimethyloxosulfonium methylide, generated by the treatment of trimethylsulfoxonium iodide with NaH in DMSO/THF at 0°, resulted in the formation of 2,3‐dihydro‐3‐methylidene‐1H‐isoindol‐1‐one ( 2a ) in 77% yield. Similarly, six 2‐formylbenzonitriles carrying substituent(s) at C(4) and/or C(5), i.e., 1b – 1g , also gave the corresponding expected products 2b – 2g in comparable yields.  相似文献   

12.
Treatment of 4,6‐diamino‐3‐cyano‐2‐methylthiopyridine ( 1 ) with aqueous KOH or hydrazine hydrate afforded the corresponding nicotinamide 2 and pyrazolo[3,4‐b]pyridine 3 , respectively. Reaction of compound 1 with bromine, sulfuryl chloride, formaldehyde, or aromatic diazonium salts gave 5‐bromopyridine 4 , 5‐chloropyridine 5 , dipyridylmethane 6 , and azo dyes 7 , 8 , 9 , 10 , respectively. Compound 1 reacted with diketones to yield the corresponding butenylamino derivative 11 and amides 12 , 13 , 14 , 15 , respectively. Treatment of butanamide 13 with diazonium salts or a mixture of urea and aromatic aldehyde in the presence of drops of HCl as a catalyst yielded the corresponding arylhydrazones 16 , 17 , 18 , 19 , pyrimidines 20 , 21 , 22 , 23 , 24 , and 1,8‐naphthyridine 25 , respectively. The potency of the results as anti‐inflammatory and antifungal agents have been evaluated. The compounds have been characterized based on their spectral and elemental analysis.  相似文献   

13.
A series of CO‐releasing molecules [M(CO)5L] (M=Cr, W, Mo, L=acetyl salicylamide 3‐pyridine, 1 – 3 ; L=N,N‐dimethyl‐4‐pyridine, 4 – 6 ; L=nicotinamide, 7 – 9 ; L=4‐CHO‐pyridine, 10 – 12 ) were synthesized. And in this paper, we have investigated mainly cytotoxicity and properties of the CO‐releasing molecules containing acetyl salicyamide‐3‐pyridine, namely complexes 1 – 3 . The stability of complexes 1 and 2 was evaluated by means of UV‐Vis spectroscopy and 1H NMR spectra. The results indicate complexes 1 and 2 were stable in methanol and acidic aqueous solution, but unstable and decayed in basic media (pH 10.0). Among all the complexes, complex 2 was the slowest CO‐releaser, and its half‐life was 73.8 min. Complex 9 containing nicotinamide was the fastest CO‐releaser with half‐life only 6.5 min. In addition, cytotoxic effects of all the complexes on the proliferation of fibroblast line were assayed by MTT. Among all the complexes, the IC50 of complex 1 was 6 µmol/L, revealing complex 1 possessed stronger antiproliferative activity than the control. Analysis by Flow cytometry revealed that complex 1 arrested Hela cells in S phase while complexes 2 and 8 arrested in G2/M phase. Cell apoptosis caused by the complexes mainly occurred in "Late apoptosis".  相似文献   

14.
Enoate reductases from the family of old yellow enzymes (OYEs) can catalyze stereoselective trans ‐hydrogenation of activated C=C bonds. Their application is limited by the necessity for a continuous supply of redox equivalents such as nicotinamide cofactors [NAD(P)H]. Visible light‐driven activation of OYEs through NAD(P)H‐free, direct transfer of photoexcited electrons from xanthene dyes to the prosthetic flavin moiety is reported. Spectroscopic and electrochemical analyses verified spontaneous association of rose bengal and its derivatives with OYEs. Illumination of a white light‐emitting‐diode triggered photoreduction of OYEs by xanthene dyes, which facilitated the enantioselective reduction of C=C bonds in the absence of NADH. The photoenzymatic conversion of 2‐methylcyclohexenone resulted in enantiopure (ee >99 %) (R )‐2‐methylcyclohexanone with conversion yields as high as 80–90 %. The turnover frequency was significantly affected by the substitution of halogen atoms in xanthene dyes.  相似文献   

15.
Phosphatidylethanolamines are a major class of phospholipids found in cellular membranes. Identification of the alterations in these phospholipids, induced by free radicals, could provide new tools for in vivo diagnosis of oxidative stress. In this study, 1‐palmitoyl‐2‐linoleoyl‐phosphatidylethanolamine oxidation products, induced by the hydroxyl radical, were studied using LC‐MS and LC‐MS/MS. Data obtained allowed the identification and separation of isomeric oxidative products with modifications in the sn‐2 acyl chain, attributed to long‐ and short‐chain products. Among long‐chain products keto, keto‐hydroxy, hydroxy, poly‐hydroxy, peroxy and hydroxy–peroxy derivatives were identified. Product ions formed by loss of two H2O molecules vs loss of HOOH, allowed the identification of, respectively, di‐ (or poli‐) hydroxy vs peroxy derivatives. Location of functional groups was determined by the product ions formed by cleavage of C–C bonds, in the vicinity of the oxidation positions, allowing the identification of C9, C12 and C13 as the predominant substituted positions. Short‐chain products identified comprised aldehydes, hydroxy‐aldehydes and carboxylic derivatives, with modified sn‐2 acyl lengths of C7–C9 and C11, C12. Among the short‐chain products identified, C9 products showed higher relative abundance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Cellulose ( 1 ) was converted for the first time to 6‐phenyl‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 6 ) in 33% overall yield. Intermediates in the five‐step conversion of 1 to­ 6 were: 6‐O‐tritylcellulose ( 2 ), 6‐O‐trityl‐2,3‐di‐O‐methylcellulose ( 3 ), 2,3‐di‐O‐methylcellulose ( 4 ); and 6‐bromo‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 5 ). Elemental and quantitative carbon‐13 analyses were concurrently used to verify and confirm the degrees of substitution in each new polymer. Gel permeation chromotography (GPC) data were generated to monitor the changes in molecular weight (DPw) as the synthesis progressed, and the compound average decrease in cellulose DPw was ~ 27%. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the decomposition of all polymers. The degradation temperatures ( °C) and percent char at 500 °C of cellulose derivatives 2 to 6 were 308.6 and 6.3%, 227.6 °C and 9.7%, 273.9 °C and 30.2%, 200.4 °C and 25.6%, and 207.2 °C and 27.0%, respectively. The glass transition temperature (Tg) of­6‐O‐tritylcellulose by dynamic mechanical analysis (DMA) occurred at 126.7 °C and the modulus (E′, Pa) dropped 8.9 fold in the transition from ?150 °C to + 180 °C (6.6 × 109 to 7.4 × 108 Pa). Modulus at 20 °C was 3.26 × 109 Pa. Complete proton and carbon‐13 chemical shift assignments of the repeating unit of the title polymer were made by a combination of the HMQC and COSY NMR methods. Ultimate non‐destructive proof of carbon–carbon bond formation at C6 of the anhydroglucose moiety was established by generating correlations between resonances of CH26 (anhydroglucose) and C1′, H2′, and H6′ of the attached aryl ring using the heteronuclear multiple‐bond correlation (HMBC) method. In this study, we achieved three major objectives: (a) new methodologies for the chemical modification of cellulose were developed; (b) new cellulose derivatives were designed, prepared and characterized; (c) unequivocal structural proof for carbon–carbon bond formation with cellulose was derived non‐destructively by use of one‐ and two‐dimensional NMR methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Ding‐Zhi‐Xiao‐Wan (DZXW) is a famous traditional Chinese medicine (TCM) formula, which is composed of four herbs, Ginseng Radix, Poria, Polygala Radix and Acori Tatarinowii Rhizoma. It has been popularly used for the treatment of emotional disease, like Alzheimer's disease, Parkinson's disease, depression, anxiety, forgetfulness and neurasthenia. In this research, a high‐performance liquid chromatography coupled with ion‐trap tandem mass spectrometry (HPLC‐IT‐MSn) method along with a high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry (HPLC‐Q‐TOF‐MS) method in negative ion mode was established to investigate the major constitutions in DZXW. The extracts were prepared by ultra‐sonication in ethyl acetate, n‐butanol, 95% ethanol and deionized water sequentially as well as in deionized water directly. A Kromasil C18 column was used to separate the extracts of DZXW. Acetonitrile and 0.1% aqueous formic acid (V/V) were used as the mobile phase. A total of 64 components were characterized, including 16 triterpenoids, 14 Polygala saponins, 10 oligosaccharide esters, 6 sucrose esters, 2 xanthone C‐glycosides and 16 ginsenosides.  相似文献   

18.
An LC‐MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N‐methyl‐2‐pyridone‐5‐carboxamide (2‐Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid–liquid extraction. The chromatographic separation of NA, NAM, NUA, 2‐Pyr and IS was achieved on a Hypersil‐BDS column (150 ¥ 4.6 mm, 5 mm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2‐Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100–20000 ng/mL for NA; 10–1600 ng/mL for NUA and NAM and 50–5000 ng/mL for 2‐Pyr with mean correlation coefficient of ≥0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We describe two water‐soluble ruthenium complexes, [ 1 ]Cl2 and [ 2 ]Cl2, that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm−2) of red light in an oxygen‐independent manner. Using a specific NAMPT activity assay, up to an 18‐fold increase in inhibition potency was measured upon red‐light activation of [ 2 ]Cl2, while [ 1 ]Cl2 was thermally unstable. For the first time, the dark and red‐light‐induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2). In skin (A431) and lung (A549) cancer cells, a 3‐ to 4‐fold increase in cytotoxicity was found upon red‐light irradiation for [ 2 ]Cl2, whether the cells were cultured and irradiated with 1 % or 21 % O2. These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient.  相似文献   

20.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号