首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X‐ray structure determinations of the two title com­pounds, namely 7‐methyl‐7,17‐di­aza‐3,11‐diazo­niabi­cyclo[11.3.1]­hep­ta­deca‐1(17),13,15‐triene dichloride monohydrate, C14H26N42+·2Cl?·H2O, (I), and 7‐methyl‐17‐aza‐3,7,11‐triazo­niabi­cyclo­[11.3.1]­heptadeca‐1(17),13,15‐triene 2.826‐chloride 0.174‐nitrate, C14H27N43+·2.826Cl?·0.174NO3?, (II), are re­ported. Protonation occurs at the secondary amine N atoms in (I) and at all three amine N atoms in (II) to which the Cl? ions are linked via N—H?Cl hydrogen bonds. The macrocyclic hole is quite different in both structures, as is observed by comparing particularly the N3?N4 distances [2.976 (4) and 4.175 (4) Å for (I) and (II), respectively]. In (II), a Cl? ion alternates with an NO3? ion in a disordered structure.  相似文献   

2.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

3.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

4.
In this study, we theoretically investigated the mechanism underlying the high‐valent mono‐oxo‐rhenium(V) hydride Re(O)HCl2(PPh3)2 ( 1 ) catalyzed hydrosilylation of C?N functionalities. Our results suggest that an ionic SN2‐Si outer‐sphere pathway involving the heterolytic cleavage of the Si?H bond competes with the hydride pathway involving the C?N bond inserted into the Re?H bond for the rhenium hydride ( 1 ) catalyzed hydrosilylation of the less steric C?N functionalities (phenylmethanimine, PhCH=NH, and N‐phenylbenzylideneimine, PhCH=NPh). The rate‐determining free‐energy barriers for the ionic outer‐sphere pathway are calculated to be ~28.1 and 27.6 kcal mol?1, respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ~1–3 kcal mol?1), whereas for the large steric C?N functionality of N,1,1‐tri(phenyl)methanimine (PhCPh=NPh), the ionic outer‐sphere pathway (33.1 kcal mol?1) is more favorable than the hydride pathway by as much as 11.5 kcal mol?1. Along the ionic outer‐sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si?H bond.  相似文献   

5.
The N,N,O‐cobalt(II), [2,3‐{C4H8C(NAr)}:5,6‐{C4H8C(O)}C5HN]CoCl2 (Ar = 2,6‐(CHPh2)2‐4‐MeC6H2 Co1 , 2,6‐(CHPh2)2‐4‐EtC6H2 Co2 , 2,6‐(CHPh2)2‐4‐ClC6H2 Co3 , 2,6‐(CHPh2)2‐4‐FC6H2 Co4 ) and N,N,O‐iron(II) complexes, [2,3‐{C4H8C(NAr)}:5,6‐{C4H8C(O)}C5HN]FeCl2 (Ar = 2,6‐(CHPh2)2‐4‐MeC6H2 Fe1 , 2,6‐(CHPh2)2‐4‐EtC6H2 Fe2 , 2,6‐(CHPh2)2‐4‐ClC6H2 Fe3 , 2,6‐(CHPh2)2‐4‐FC6H2 Fe4 ), each containing one sterically enhanced but electronically modifiable N‐2,6‐dibenzhydryl‐4‐R2‐phenyl group, have been prepared by a one‐pot template approach using α,α′‐dioxo‐2,3:5,6‐bis(pentamethylene)pyridine, the corresponding aniline along with the respective cobalt or iron salt in acetic acid. Distorted square pyramidal geometries are a feature of the molecular structures of Co1 – Co4 . Upon activation with MAO or MMAO, Co1 – Co4 show good activities (up to 2.2 × 105 g mol?1(Co) h?1) affording short chain oligomers (C4–C30) with good α‐olefin selectivity. By contrast, Fe1 – Fe4 , in the presence of MMAO, displayed moderate activities (up 10.9 × 104 g(PE) mol?1(Fe) h?1) for ethylene polymerization forming low‐molecular‐weight linear polymers (up to 13.0 kg mol?1) incorporating saturated n‐propyl and i‐butyl chain ends. For both cobalt and iron, the precatalysts incorporating the more electron withdrawing 4‐R2‐substituents [Cl ( Co3 / Fe3 ), F ( Co4 / Fe4 )] deliver the best catalytic activities, while with cobalt, these types of substituents additionally broaden the oligomeric distribution. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3980–3989  相似文献   

6.
In the structure of the first bis‐adduct of 2,5‐bis­[3‐(tert‐butyl­aminoxyl)­phenyl]‐1,1‐dimethyl‐3,4‐diphenyl­silole with bis­(hexa­fluoro­acetyl­acetonato)­manganese(II), [Mn(C5HF6O2)2(C38H42N2O2Si)2], the Mn atom lies on a crystallographic inversion centre and is bound to two chelating hexafluoro­acetylacetonate ligands and two monodentate nitroxide groups in a distorted octa­hedral configuration. The silole ligands present a propeller‐like arrangement of the benzene rings around the Si‐containing five‐membered ring. The dihedral angles between the complexed nitroxides and the benzene rings to which they are bound are smaller than those found in the free ligand.  相似文献   

7.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

8.
Semicarbazones can exist in two tautomeric forms. In the solid state, they are found in the keto form. This work presents the synthesis, structures and spectroscopic characterization (IR and NMR spectroscopy) of four such compounds, namely the neutral molecule 4‐phenyl‐1‐[phenyl(pyridin‐2‐yl)methylidene]semicarbazide, C19H16N4O, (I), abbreviated as HBzPyS, and three different hydrated salts, namely the chloride dihydrate, C19H17N4O+·Cl?·2H2O, (II), the nitrate dihydrate, C19H17N4O+·NO3?·2H2O, (III), and the thiocyanate 2.5‐hydrate, C19H17N4O+·SCN?·2.5H2O, (IV), of 2‐[phenyl({[(phenylcarbamoyl)amino]imino})methyl]pyridinium, abbreviated as [H2BzPyS]+·X?·nH2O, with X = Cl? and n = 2 for (II), X = NO3? and n = 2 for (III), and X = SCN? and n = 2.5 for (IV), showing the influence of the anionic form in the intermolecular interactions. Water molecules and counter‐ions (chloride or nitrate) are involved in the formation of a two‐dimensional arrangement by the establishment of hydrogen bonds with the N—H groups of the cation, stabilizing the E isomers in the solid state. The neutral HBzPyS molecule crystallized as the E isomer due to the existence of weak π–π interactions between pairs of molecules. The calculated IR spectrum of the hydrated [H2BzPyS]+ cation is in good agreement with the experimental results.  相似文献   

9.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

10.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

11.
The X‐ray structure analysis of the unexpected product of the reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine revealed the title compound, C12H17N4+·C2H3O2?·0.5C3H6O, consisting of a protonated amidine moiety joined to a substituted pyrazoline ring at the N1 atom. The amidine group is protonated and the positive charge is delocalized over the three C—N bonds in a similar manner to that found in guanidinium salts. The amidinium moiety of the cation is linked to the acetate anions through four N—H?O hydrogen bonds, with N?O distances of 2.749 (4), 2.848 (4), 2.904 (4) and 2.911 (4) Å. The pyrazoline ring adopts a flattened envelope conformation and the substituted phenyl ring is oriented perpendicular to the attached heterocycle. The acetone solvate molecule lies across a twofold rotation axis.  相似文献   

12.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

13.
We report here the synthesis of new C,N‐chelated chlorostannylenes and germylenes L3MCl (M=Sn( 1 ), Ge ( 2 )) and L4MCl (M=Sn( 3 ), Ge ( 4 )) containing sterically demanding C,N‐chelating ligands L3, 4 (L3=[2,4‐di‐tBu‐6‐(Et2NCH2)C6H2]?; L4=[2,4‐di‐tBu‐6‐{(C6H3‐2′,6′‐iPr2)N=CH}C6H2]?). Reductions of 1 – 4 yielded three‐coordinate C,N‐chelated distannynes and digermynes [L3, 4M ]2 for the first time ( 5 : L3, M=Sn, 6 : L3, M=Ge, 7 : L4, M=Sn, 8 : L4, M=Ge). For comparison, the four‐coordinate distannyne [L5Sn]2 ( 10 ) stabilized by N,C,N‐chelate L5 (L5=[2,6‐{(C6H3‐2′,6′‐Me2)N?CH}2C6H3]?) was prepared by the reduction of chlorostannylene L5SnCl ( 9 ). Hence, we highlight the role of donor‐driven stabilization of tetrynes. Compounds 1 – 10 were characterized by means of elemental analysis, NMR spectroscopy, and in the case of 1 , 2 , 5 – 7 , and 10 , also by single‐crystal X‐ray diffraction analysis. The bonding situation in either three‐ or four‐coordinate distannynes 5 , 7 , and 10 was evaluated by DFT calculations. DFT calculations were also used to compare the nature of the metal–metal bond in three‐coordinate C,N‐chelating distannyne [L3Sn]2 ( 5 ) and related digermyme [L3Ge]2 ( 6 ).  相似文献   

14.
The title molecular complex, [CoCl2(C22H18N6O)], features a novel 18‐membered Co‐containing metallocycle. The CoII atom lies in a fairly regular tetrahedral geometry defined by two imidazole N‐atom donors from one 2,5‐bis[3‐(1H‐1,3‐imidazol‐1‐ylmethyl)phenyl]‐1,3,4‐oxadiazole (L) ligand and two chloride anions. The coordinating orientation of the L ligand plays an important role in constructing the metallocycle complex. The complexes form a three‐dimensional supramolecular assembly via nonclassical C—H...Cl and C—H...N hydrogen bonds and π–π interactions.  相似文献   

15.
5‐Benzylamino‐3‐tert‐butyl‐1‐phenyl‐1H‐pyrazole, C20H23N3, (I), and its 5‐[4‐(trifluoromethyl)benzyl]‐, C21H22F3N3, (III), and 5‐(4‐bromobenzyl)‐, C20H22BrN3, (V), analogues, are isomorphous in the space group C2/c, but not strictly isostructural; molecules of (I) form hydrogen‐bonded chains, while those of (III) and (V) form hydrogen‐bonded sheets, albeit with slightly different architectures. Molecules of 3‐tert‐butyl‐5‐(4‐methylbenzylamino)‐1‐phenyl‐1H‐pyrazole, C21H25N3, (II), are linked into hydrogen‐bonded dimers by a combination of N—H...π(arene) and C—H...π(arene) hydrogen bonds, while those of 3‐tert‐butyl‐5‐(4‐chlorobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22ClN3, (IV), form hydrogen‐bonded chains of rings which are themselves linked into sheets by an aromatic π–π stacking interaction. Simple hydrogen‐bonded chains built from a single N—H...O hydrogen bond are formed in 3‐tert‐butyl‐5‐(4‐nitrobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22N4O2, (VI), while in 3‐tert‐butyl‐5‐(3,4,5‐trimethoxybenzylamino)‐1‐phenyl‐1H‐pyrazole, C23H29N3O3, (VII), which crystallizes with Z′ = 2 in the space group P, pairs of molecules are linked into two independent centrosymmetric dimers, one generated by a three‐centre N—H...(O)2 hydrogen bond and the other by a two‐centre N—H...O hydrogen bond.  相似文献   

16.
Three diacylthioureas 1,4‐C6H4[C(O)NHC(S)NHAr]2 (Ar = 2,6‐iPr2C6H3) ( L1 , 1 ), 1,3‐C6H4[C(O)NHC(S)NHAr]2 ( L2 , 2 ), and 1,3‐C6H4[C(O)NHC(S)NHAr′]2 (Ar′ = 2,6‐Me2C6H3) ( L3 , 3 ) were synthesized and characterized. The CuI complexes from the reactions of bipodal ligands Ln with CuX (X = Cl, Br, I) were structurally investigated by single‐crystal X‐ray diffraction methods. Treatment of L1 with CuX gave the metallamacrocyclic complexes ( L1 CuX)2 [X = Cl ( 4 ), Br ( 5 ), I ( 6 )] with the ligand to metal in a ratio of 2:2, where both sulfur and halide anions function as terminal substituents. In contrast, when L2 or L3 was reacted with CuBr, the two Ln ligands coordinate to four copper atoms each in a bridging and terminal fashion to yield [ Ln (CuBr)2]2 [n = 2 ( 7 ), 3 ( 8 )]. The obtained S4Cu4Br4 core contains all four bromide anions in bridging positions. The reaction of L3 with CuX (X = Cl, I) gave the 3:3 trinuclear complexes ( L3 CuX)3 [X = Cl ( 9 ) I ( 10 )], interconnected by halide bridges. The obtained diacylthioureas ( 1 – 3 ) and their CuI complexes ( 4 – 10 ) were also characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy.  相似文献   

17.
The N,N‐diaryliminoacenaphthenes, 1,2‐[2,4‐{(4‐FC6H4)2CH}2‐6‐MeC6H4N]2‐C2C10H6 ( L1 ) and 1‐[2,4‐{(4‐FC6H4)2CH}2‐6‐MeC6H4N]‐2‐(ArN)C2C10H6 (Ar = 2,6‐Me2C6H3 L2 , 2,6‐Et2C6H3 L3 , 2,6‐i‐Pr2C6H3 L4 , 2,4,6‐Me3C6H2 L5 , 2,6‐Et2‐4‐MeC6H2 L6 ), incorporating at least one N ?2,4‐bis(difluoro benzhydryl)‐6‐methylphenyl group, have been synthesized and fully characterized. Interaction of L1 – L6 with (DME)NiBr2 (DME = 1,2‐dimethoxyethane) generates the corresponding nickel(II) bromide N,N‐chelates, L NiBr2 ( 1 – 6 ), in high yield. The molecular structures of 3 and 6 reveal distorted tetrahedral geometries at nickel with the ortho‐substituted difluorobenzhydryl group providing enhanced steric protection to only one side of the metal center. On activation with various aluminum alkyl co‐catalysts, such as methylaluminoxane (MAO) or Et2AlCl, 1 – 6 displayed outstanding activity toward ethylene polymerization (up to 1.02 × 107 g of PE (mol of Ni)?1 h?1). Notably 1 , bearing equivalent fluorobenzhydryl‐substituted N‐aryl groups, was able in the presence of Et2AlCl to couple high activity with exceptional thermal stability generating high molecular weight branched polyethylenes at temperatures as high as 100 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1971–1983  相似文献   

18.
In the centrosymmetric title complex, [Ni(C7H7N4O3)2(C5H5N)2], the coordination geometry about the Ni2+ ion is octahedral, with two deprotonated 1‐methyl‐3‐(p‐nitro­phenyl)­triazenide 1‐oxide ions, viz. [O2N­C6H4­NNN(O)­CH3]?, acting as bidentate ligands (four‐electron donors). Two neutral pyridine (py) mol­ecules complete the coordination sphere in positions trans to each other. The triazenide 1‐oxide ligand is almost planar, the largest interplanar angle of 8.80 (12)° being between the phenyl ring of the p‐nitro­phenyl group and the plane defined by the N3O moiety. The Ni—Ntriazenide, Ni—O and Ni—Npy distances are 2.0794 (16), 2.0427 (13) and 2.1652 (18) Å, respectively.  相似文献   

19.
Cyclohexylamine reacts with 5‐chloro‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde to give 5‐cyclohexylamino‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H20N4O, (I), formed by nucleophilic substitution, but with 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde the product is (Z)‐4‐[(cyclohexylamino)methylidene]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one, C17H21N3O, (II), formed by condensation followed by hydrolysis. Compound (II) crystallizes with Z′ = 2, and in one of the two independent molecular types the cyclohexylamine unit is disordered over two sets of atomic sites having occupancies of 0.65 (3) and 0.35 (3). The vinylogous amide portion in each compound shows evidence of electronic polarization, such that in each the O atom carries a partial negative charge and the N atom of the cyclohexylamine portion carries a partial positive charge. The molecules of (I) contain an intramolecular N—H...N hydrogen bond, and they are linked by C—H...O hydrogen bonds to form sheets. Each of the two independent molecules of (II) contains an intramolecular N—H...O hydrogen bond and each molecular type forms a centrosymmetric dimer containing one R22(4) ring and two inversion‐related S(6) rings.  相似文献   

20.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号