共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐Boc‐Indolylbenzothiadiazole Derivatives: Efficient Full‐Color Solid‐State Fluorescence and Self‐Recovering Mechanochromic Luminescence 下载免费PDF全文
Dr. Suguru Ito Takeshi Yamada Tomohiro Taguchi Prof. Dr. Yoshitaka Yamaguchi Prof. Dr. Masatoshi Asami 《化学:亚洲杂志》2016,11(13):1963-1970
Herein, the solid‐state emission with good fluorescence quantum yields of N‐Boc‐indolylbenzothiadiazoles as a new class of fluorophores is described. Their solid‐state emission covers the wide range of the visible spectrum and the emission color can be tuned easily by changing the substituents on the two heteroaromatic rings. Among these, 3‐methylindolyl derivatives exhibit moreover autonomously self‐recovering mechanochromic luminescence, whereby the original solid‐state emission could be recovered spontaneously at room temperature after exposure to a mechanical stimulus. The emission color, as well as the recovery time for the color change could be tuned via the introduction of different substituents on the benzothiadiazole ring. We propose that the mechanism of the autonomously self‐recovering mechanochromic luminescence of 3‐methylindolylbenzothiadiazoles is based on a partial amorphization of the crystals upon exposure to the mechanical stimulus, followed by autonomous recovering in the form of recrystallization. 相似文献
2.
3.
Exciplex Emission from a Boron Dipyrromethene (Bodipy) Dye Equipped with a Dicyanovinyl Appendage 下载免费PDF全文
Adela Nano Dr. Raymond Ziessel Patrycja Stachelek Dr. Mohammed A. H. Alamiry Prof. Dr. Anthony Harriman 《Chemphyschem》2014,15(1):177-186
The photophysical properties of a prototypic donor–acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso‐phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited‐singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170<P<550 MPa), the molecule undergoes reversible distortion that has a small effect on the yield of π, π* emission but severely quenches exciplex fluorescence. In the limiting case, this high‐pressure effect decreases the molar volume of the solute by approximately 25 cm3 and opens a new channel for nonradiative deactivation of the excited‐state manifold. 相似文献
4.
Marappan Velusamy Dr. Ying‐Chan Hsu Dr. Jiann T. Lin Prof. Dr. Che‐Wei Chang Chao‐Ping Hsu Prof. Dr. 《化学:亚洲杂志》2010,5(1):87-96
A series of donor–π–acceptor‐type organic dyes based on 1‐alkyl‐1H‐imidazole spacers 1 , 2 , 3 , 4 , 5 have been developed and characterized. The two electron donors are at positions 4 and 5 of the imidazole, while the electron‐accepting cyanoacrylic acid is incorporated at position 2 by a spacer‐containing heteroaromatic rings, such as thiophene and thiazole. Detailed investigation on the relationship between the structure, spectral and electrochemical properties, and performance of DSSC is described here. Dye‐sensitized solar cells (DSSCs) using dyes as the sensitizers exhibit good efficiencies, ranging from 3.06 to 6.35 %, which reached 42–87 % with respect to that of N719‐based device (7.33 %) fabricated and measured under similar conditions. Time‐dependent density functional theory (TDDFT) calculations have been performed on the dyes, and the results show that both electron donors can contribute to electron injection upon photo‐excitation, either directly or indirectly by internal conversion to the lowest excited state. 相似文献
5.
6.
Synthesis,Structure, and Optical Studies of Donor–Acceptor‐Type Near‐Infrared (NIR) Aza–Boron‐Dipyrromethene (BODIPY) Dyes 下载免费PDF全文
Naresh Balsukuri Mohsin Y. Lone Dr. Prakash C. Jha Dr. Shigeki Mori Dr. Iti Gupta 《化学:亚洲杂志》2016,11(10):1572-1587
Six donor–acceptor‐type near‐infrared (NIR) aza–boron‐dipyrromethene (BODIPY) dyes and their corresponding aza–dipyrrins were designed and synthesized. The donor moieties at the 1,7‐positions of the aza–BODIPY core were varied from naphthyl to N‐phenylcarbazole to N‐butylcarbazole. The 3,5‐positions were also substituted with phenyl or thienyl groups in the aza–BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza–BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza–BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza–BODIPY core in all of the compounds under study. Time‐dependent (TD)‐DFT studies indicated effective electronic interactions between energy donor groups and aza–dipyrrin unit in all the aza–BODIPYs studied. The HOMO–LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza–BODIPYs relative to their corresponding aza–dipyrrins. 相似文献
7.
Highly Emissive Luminogens Based on Imidazo[1,2‐a]pyridine for Electroluminescent Applications 下载免费PDF全文
Natarajan Nagarajan Gunasekaran Velmurugan Asit Prakash Dr. Nanda Shakti Prof. Dr. Monica Katiyar Prof. Dr. Ponnambalam Venuvanalingam Prof. Dr. Rajalingam Renganathan 《化学:亚洲杂志》2014,9(1):294-304
A search for novel organic luminogens led us to design and synthesize some N‐fused imidazole derivatives based on imidazo[1,2‐a]pyridine as the core and arylamine and imidazole as the peripheral groups. The fluorophores were synthesized through a multicomponent cascade reaction (A3 coupling) of a heterocyclic azine with an aldehyde and alkyne, followed by Suzuki coupling and a multicomponent cyclization reaction. All of the compounds exhibited interesting photophysical responses, especially arylamine‐containing derivatives, which displayed strong positive solvatochromism in the emission spectra that indicated a more polar excited state owing to an efficient charge migration from the donor arylamine to the imidazo[1,2‐a]pyridine acceptor. The quantum yields ranged from 0.2 to 0.7 and depended on the substitution pattern, most notably that based on the donor group at the C2 position. Moreover, the influence of general and specific solvent effects on the photophysical properties of the fluorophores was discussed with four‐parameter Catalán and Kamlet–Taft solvent scales. The excellent thermal, electrochemical, and morphological stability of the compounds was explored by cyclic voltammetry, thermogravimetric analysis, and AFM methods. Furthermore, to understand the structure, bonding, and band gap of the molecules, DFT calculations were performed. The performance of the electroluminescence behavior of the imidazo[1,2‐a]pyridine derivative was investigated by fabricating a multilayer organic light‐emitting diode with a configuration of ITO/NPB (60 nm)/EML (40 nm)/BCP (15 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al(100 nm) (ITO=indium tin oxide, EML=emissive layer, BCP=2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline, Alq3=tris(8‐hydroxyquinolinato)aluminum), which exhibited white emission with a turn‐on voltage of 8 V and a brightness of 22 cd m?2. 相似文献
8.
Ram B. Ambre Gao‐Fong Chang Manoj R. Zanwar Prof. Ching‐Fa Yao Prof. Eric Wei‐Guang Diau Dr. Chen‐Hsiung Hung 《化学:亚洲杂志》2013,8(9):2144-2153
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers. 相似文献
9.
Elena Yu. Schmidt Dr. Boris A. Trofimov Prof. Dr. Al'bina I. Mikhaleva Prof. Dr. Nadezhda V. Zorina Dr. Nadezhda I. Protzuk Dr. Konstantin B. Petrushenko Dr. Igor A. Ushakov Dr Marina Yu. Dvorko Rachel Méallet‐Renault Prof. Dr. Gilles Clavier Dr. Thanh Truc Vu Ha Thanh Thao Tran Robert B. Pansu Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(23):5823-5830
The light fantastic : Two new 2‐(benzo[b]thiophene‐3‐yl)pyrroles have been synthesized, and are shown to exhibit optical properties that are promising for optoelectronic materials and devices such as highly efficient fluorescent sensors (see scheme). In addition a new BODIPY fluorophore, derived from 2‐(benzo[b]thiophene‐3‐yl)pyrrole, was also isolated and shows good spectroscopic properties in solution which are fully preserved in the solid state.
10.
《化学:亚洲杂志》2017,12(14):1736-1748
Five centrosymmetric and one dipolar pyrrolo[3,2‐b ]pyrroles, possessing either two or one strongly electron‐withdrawing nitro group have been synthesized in a straightforward manner from simple building blocks. For the symmetric compounds, the nitroaryl groups induced spontaneous breaking of inversion symmetry in the excited state, thereby leading to large solvatofluorochromism. To study the origin of this effect, the series employed peripheral structural motifs that control the degree of conjugation via altering of dihedral angle between the 4‐nitrophenyl moiety and the electron‐rich core. We observed that for compounds with a larger dihedral angle, the fluorescence quantum yield decreased quickly when exposed to even moderately polar solvents. Reducing the dihedral angle (i.e., placing the nitrobenzene moiety in the same plane as the rest of the molecule) moderated the dependence on solvent polarity so that the dye exhibited significant emission, even in THF. To investigate at what stage the symmetry breaking occurs, we measured two‐photon absorption (2PA) spectra and 2PA cross‐sections (σ2PA) for all six compounds. The 2PA transition profile of the dipolar pyrrolo[3,2‐b ]pyrrole, followed the corresponding one‐photon absorption (1PA) spectrum, which provided an estimate of the change of the permanent electric dipole upon transition, ≈18 D. The nominally symmetric compounds displayed an allowed 2PA transition in the wavelength range of 700–900 nm. The expansion via a triple bond resulted in the largest peak value, σ2PA=770 GM, whereas altering the dihedral angle had no effect other than reducing the peak value two‐ or even three‐fold. In the S 0→S 1 transition region, the symmetric structures also showed a partial overlap between 2PA and 1PA transitions in the long‐wavelength wing of the band, from which a tentative, relatively small dipole moment change, 2–7 D, was deduced, thus suggesting that some small symmetry breaking may be possible in the ground state, even before major symmetry breaking occurs in the excited state. 相似文献
11.
Esra Şen Dr. Kadem Meral Dr. Serdar Atılgan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(2):736-745
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. 相似文献
12.
Eunwoo Lee Chanhoi Kim Prof. Jyongsik Jang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(31):10280-10286
High‐performance Förster resonance energy transfer (FRET)‐based dye‐sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum‐dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as‐synthesized water‐soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high‐performance FRET‐based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye‐sensitized solar cells. 相似文献
13.
Kamil Skonieczny Ilias Papadopoulos Dominik Thiel Krzysztof Gutkowski Philipp Haines Patrick M. McCosker Adle D. Laurent Paul A. Keller Timothy Clark Denis Jacquemin Dirk M. Guldi Daniel T. Gryko 《Angewandte Chemie (International ed. in English)》2020,59(37):16104-16113
Red‐emissive π‐expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three‐step strategy involving the preparation of diketopyrrolopyrrole followed by N‐arylation and subsequent intramolecular palladium‐catalyzed direct arylation. Comprehensive spectroscopic assays combined with first‐principles calculations corroborated that both N‐arylated and fused DPPs reach a locally excited (S1) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents. 相似文献
14.
Abhishek Baheti Dr. K. R. Justin Thomas Chuan‐Pei Lee Prof. Dr. Kuo‐Chuan Ho 《化学:亚洲杂志》2012,7(12):2942-2954
Organic dyes that contain a 2,7‐diaminofluorene‐based donor, a cyanoacrylic‐acid acceptor, and various aromatic conjugation segments, which are composed of benzene, fluorene, carbazole, and thiophene units, as a π‐bridge have been synthesized and characterized by optical, electrochemical, and theoretical investigations. The trends in the absorption and electrochemical properties of these dyes are in accordance with the electron‐donating ability of the conjugating segment. Consequently, the dyes that contained a 2,7‐carbazole unit in the π‐spacer exhibited red‐shifted absorption and lower oxidation potentials than their corresponding fluorene‐ and phenylene‐bridged dyes. However, the enhanced power‐conversion efficiency that was exhibited by the fluorene‐bridged dyes in the DSSCs was attributed to their broader and intense absorption. Despite the longer‐wavelength absorption and reasonable optical density, carbazole‐bridged dyes exhibited lower power‐conversion efficiencies, which were ascribed to the poor alignment of the LUMO level in these dyes, thereby leading to the inhibition of electron injection into the TiO2 conduction band. 相似文献
15.
Promotion of Förster Resonance Energy Transfer in a Saponite Clay Containing Luminescent Polyhedral Oligomeric Silsesquioxane and Rhodamine Dye 下载免费PDF全文
Francesco Olivero Dr. Fabio Carniato Dr. Chiara Bisio Prof. Leonardo Marchese 《化学:亚洲杂志》2014,9(1):158-165
A new hybrid photostable saponite clay with embedded donor–acceptor dyes was prepared and characterized in this work. The saponite is intercalated with a luminescent polyhedral oligomeric silsesquioxane, which transfers the photoexcitation energy directly to an acceptor dye (rhodamine B). The obtained composite material was characterized by means of XRD, TEM microscopy, and UV/Vis and photoluminescence spectroscopy. A physicochemical study showed that the system behaved as an efficient Förster resonance energy transfer pair, owing to the very good spectral overlap of donor emission (λem=510–540 nm) and acceptor absorption in the λ=530–570 nm range. The hybrid material represents the first example of a photonic antenna based on a synthetic saponite clay and can be considered a step forward in the search for new, efficient, and stable materials suitable for light‐harvesting applications. 相似文献
16.
Molecular Engineering of Pyrido[3,4‐b]pyrazine‐Based Donor–Acceptor–π‐Acceptor Organic Sensitizers: Effect of Auxiliary Acceptor in Cobalt‐ and Iodine‐Based Electrolytes 下载免费PDF全文
Dr. Bo Liu Dr. Fabrizio Giordano Dr. Kai Pei Dr. Jean‐David Decoppet Prof. Wei‐Hong Zhu Dr. Shaik M. Zakeeruddin Prof. Michael Grätzel 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(51):18654-18661
Due to the ease of tuning its redox potential, the cobalt‐based redox couple has been extensively applied for highly efficient dye‐sensitized solar cells (DSSCs) with extraordinarily high photovoltages. However, a cobalt electrolyte needs particular structural changes in the organic dye components to obtain such high photovoltages. To achieve high device performance, specific requirements in the molecular tailoring of organic sensitizers still need to be met. Besides the need for large electron donors, studies of the auxiliary acceptor segment of donor–acceptor–π‐acceptor (D‐A‐π‐A) organic sensitizers are still rare in molecular optimization in the context of cobalt electrolytes. In this work, two novel organic D‐A‐π‐A‐type sensitizers ( IQ13 and IQ17 ) have been developed and exploited in cobalt‐ and iodine‐based redox electrolyte DSSCs, specifically to provide insight into the effect of π‐bridge modification in different electrolytes. The investigation has been focused on the additional electron‐withdrawing acceptor capability with grafted long alkoxy chains. Optoelectronic transient measurements have indicated that IQ17 containing a pyrido[3,4‐b]pyrazine moiety bearing long alkoxyphenyl chains is more suitable for application in cobalt‐based DSSCs. 相似文献
17.
Intense Ground‐State Charge‐Transfer Interactions in Low‐Bandgap,Panchromatic Phthalocyanine–Tetracyanobuta‐1,3‐diene Conjugates 下载免费PDF全文
Michael Sekita Dr. Beatriz Ballesteros Prof. Dr. François Diederich Prof. Dr. Dirk M. Guldi Dr. Giovanni Bottari Prof. Dr. Tomás Torres 《Angewandte Chemie (International ed. in English)》2016,55(18):5560-5564
A cycloaddition–retroelectrocyclization reaction between tetracyanoethylene and two zinc phthalocyanines (ZnIIPcs) bearing one or four anilino‐substituted alkynes has been used to install a strong, electron‐accepting tetracyanobuta‐1,3‐diene (TCBD) between the electron‐rich ZnIIPc and aniline moieties. A combination of photophysical, electrochemical, and spectroelectrochemical investigations with the ZnIIPc‐TCBD‐aniline conjugates, which present panchromatic absorptions in the visible region extending all the way to the near infrared, show that the formal replacement of the triple bond by TCBD has a dramatic effect on their ground‐ and excited‐state features. In particular, the formation of extremely intense, ground‐state charge‐transfer interactions between ZnIIPc and the electron‐accepting TCBD were observed, something unprecedented not only in Pc chemistry but also in TCBD‐based porphyrinoid systems. 相似文献
18.
《化学:亚洲杂志》2017,12(15):1935-1943
3‐Hexyloxy‐4‐cyanothiophene, 3‐pyrrolidil‐4‐cyanothiophene, and 3,4‐ethylenedioxythiophene (EDOT) units are used with benzothiadiazole as building blocks for the development of three new conjugated donor–acceptor–donor (DAD) derivatives. The DAD molecules have the central acceptor part, which is formed by combining electron‐withdrawing cyano groups and the benzothiadiazole moiety, in common. Theoretical calculations and UV/Vis and electrochemical data reveal the key role of the end‐capped donor to tune the electronic properties of the derivatives. A study of the electropolymerization process of the three derivatives shows the strong influence of the donor parts on both the reactivity of the precursors and the electronic properties of the resulting polymers. Derivatives end‐capped with pyrrolidinocyano thiophene or EDOT units lead to films of polymers presenting low band gaps of around 0.9–1.4 eV. Upon oxidation, the two polymers present different behavior. In the presence of the pyrrolidinocyano thiophene moieties, oxidation leads to a blueshift of the absorption bands, whereas with EDOT units a classical redshift, giving high absorption in the near‐IR region, is observed for the oxidized states. 相似文献
19.
Prof. Dr. Youhei Takeda Kota Hatanaka Takuya Nishida Prof. Dr. Satoshi Minakata 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(30):10360-10364
A versatile phosphorus‐containing π‐conjugated building block, thieno[3,4‐c]phosphole‐4,6‐dione (TPHODO), has been developed. The utility of this simple but hitherto unknown building block has been demonstrated by preparing novel functional organophosphorus compounds and bandgap‐tunable conjugated polymers. 相似文献
20.
Synthesis,Properties, and Redox Behavior of 1,1,4,4‐Tetracyano‐2‐ferrocenyl‐1,3‐butadienes Connected by Aryl,Biaryl, and Teraryl Spacers 下载免费PDF全文
Dr. Taku Shoji Akifumi Maruyama Chisa Yaku Natsumi Kamata Prof. Dr. Shunji Ito Dr. Tetsuo Okujima Prof. Dr. Kozo Toyota 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(1):402-409
Aryl‐substituted 1,1,4,4‐tetracyano‐1,3‐butadienes (FcTCBDs) and bis(1,1,4,4‐tetracyanobutadiene)s (bis‐FcTCBDs), possessing a ferrocenyl group on each terminal, were prepared by the reaction of a variety of alkynes with tetracyanoethylene (TCNE) in a [2+2] cycloaddition reaction, followed by retro‐electrocyclization of the initially formed [2+2] cycloadducts (i.e., cyclobutene derivatives). The characteristic intramolecular charge transfer (ICT) between the donor (ferrocene) and acceptor (TCBD) moieties were investigated by using UV/Vis spectroscopy. The redox behaviors of FcTCBDs and bis‐FcTCBDs were examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their properties of multi‐electron transfer depending on the number of ferrocene and TCBD moieties. Moreover, significant color changes were observed by visible spectroscopy under the electrochemical reduction conditions. 相似文献