首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of N‐confused free‐base meso‐substituted tetraarylporphyrins was investigated by electrochemistry and spectroelectrochemistry in nonaqueous media containing 0.1 M tetra‐n‐butylammonium perchlorate (TBAP) and added acid or base. The investigated compounds are represented as (XPh)4NcpH2, in which “Ncp” is the N‐confused porphyrin macrocycle and X is a OCH3, CH3, H, or Cl substituent on the para position of each meso‐phenyl ring of the macrocycle. Two distinct types of UV/Vis spectra are initially observed depending upon solvent, one corresponding to an inner‐2H form and the other to an inner‐3H form of the porphyrin. Both forms have an inverted pyrrole with a carbon inside the cavity and a nitrogen on the periphery of the π‐system. Each porphyrin undergoes multiple irreversible reductions and oxidations. The first one‐electron addition and first one‐electron abstraction are located on the porphyrin π‐ring system to give π‐anion and π‐cation radicals with a potential separation of 1.52 to 1.65 V between the two processes, but both electrogenerated products are unstable and undergo a rapid chemical reaction to give new electroactive species, which were characterized in the present study. The effect of the solvent and protonation/deprotonation reactions on the UV/Vis spectra, redox potentials and reduction/oxidation mechanisms is discussed with comparisons made to data and mechanisms for the structurally related free‐base corroles and porphyrins.  相似文献   

2.
Four nitrated N‐confused free‐base tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as NO2(Ar)4NcpH2, where NO2(Ar)4Ncp is the dianion of a tetraaryl N‐confused porphyrin with an inner carbon bound NO2 group and Ar is a p‐CH3OPh, p‐CH3Ph, Ph or p‐ClPh substituent on each meso‐position of the macrocycle. UV/Vis spectra and NMR spectroscopy data indicate that the same form of the porphyrin exists in CH2Cl2 and DMF which is unlike the case of non‐NO2 N‐confused porphyrins. The Soret band of NO2(Ar)4NcpH2 exhibits a 30–36 nm red‐shift in CH2Cl2 and DMF as compared to the spectrum of the non‐NO2 N‐confused porphyrins. The first two reductions and first oxidation of NO2(Ar)4NcpH2 are reversible in CH2Cl2 containing 0.1 M TBAP. The measured HOMO–LUMO gap averages 1.65 V in CH2Cl2 and 1.53 V in DMF, with both values being similar to those of the non‐NO2 substituted compounds. The nitro group on the inverted pyrrole is itself not reduced within the negative potential limit of CH2Cl2 or DMF, but its presence significantly affects both the UV/Vis spectra and redox potentials.  相似文献   

3.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

4.
《Electroanalysis》2017,29(5):1481-1489
Polymorphs of Manganese di oxide (MnO2) such as alpha (α), beta (β), gamma (γ), epsilon (ϵ), and MnOOH type materials were prepared via hydrothermal approach under different conditions. The samples were characterized by XRD, FESEM, FT‐IR, Raman and BET analysis. Cyclic voltammetry (CV) analysis confirm that α ‐ MnO2 shows better electro‐catalytic ability. Amperometry sensing of hydrogen peroxide (H2O2) was carried out by varying applied potential value with the polymorphs of MnO2. Compared with the other phases of MnO2, α ‐ MnO2 shows high linear range up to 20μM. The calculated sensitivity value for H2O2 sensing of different phases is in the order of α ‐ MnO2, β ‐ MnO2, ϵ ‐ MnO2, γ ‐ MnO2, MnOOH and found to be 0.094 mA μM−1 cm−2 > 0.072 mA μM−1 cm−2 > 0.07 mA μM−1 cm−2 > 0.03 mA μM−1 cm−2 > 0.01 mA μM−1 cm−2 respectively. All the characterization results reveal that crystalline phase plays a vital role in electrochemical behavior rather than crystalline size, morphology, surface charge, surface area.  相似文献   

5.
β‐Aminoalkylboronic acids are bioisosteres of the pharmaceutically important class of β‐amino acids but few stereoselective methods exist for their preparation. The 1,2‐addition of lithiated 1,1‐diborylalkanes onto chiral Ntert‐butanesulfinyl aldimines produces β‐sulfinimido gem‐bis(boronates) in good to excellent yields with high diastereoselectivity. The optimized conditions involve the use of rubidium fluoride and water, and are compatible with functionalized alkyl, aryl, alkenyl, and alkynyl substituents. Under these conditions, the geminal quaternary alkyl bis(pinacolatoboryl) intermediates undergo a highly diastereoselective monoprotodeboronation to afford a wide range of syn‐α,β‐disubstituted β‐aminoalkylboronates. This novel application of protodeboronation chemistry was shown to result from a kinetically controlled, diastereotopic‐group‐selective B?C bond protolysis dictated by the configuration of the adjacent stereogenic C?N center. Facile acidic cleavage of the sulfinimide auxiliary produces the free aminoboronates with high enantiomeric purity.  相似文献   

6.
A new bis(triphenylamine)‐type dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was prepared by a well‐established procedure and led to a new family of redox‐active aromatic polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenylphenylenediamine (TPPA) segments. The resulting polyamides were amorphous with good solubility in many organic solvents, and most of them could be solution cast into flexible polymer films. The polyamides exhibited high thermal stability with glass‐transition temperatures in the range of 247–293 °C and 10% weight‐loss temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during oxidative scanning, with a strong color change from a colorless or pale yellowish neutral form to green and blue oxidized forms. They had enhanced redox stability and electrochromic performance when compared with the corresponding analogs without tert‐butyl substituents on the TPPA unit. The polyamide with TPPA units in both the diacid and diamine components shows multicolored electrochromic behavior. A polyamide containing both the cathodic coloring anthraquinone chromophore and the anodic coloring TPPA chromophore has the ability to show red, green, and blue states, toward single‐component RGB electrochromics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A series of zinc porphyrins substituted at adjacent β‐positions with a CN group and para‐substituted ethenyl/ethynyl‐phenyl group have been studied using electronic absorption spectroscopy, resonance Raman spectroscopy and DFT calculations. The oxidative nucleophilic substitution of hydrogen was utilized for the introduction of a cyano substituent on the porphyrin ring. This modification has a remarkable electronic effect on the ring. The resulting porphyrin cyanoaldehyde was further modified in Wittig condensations to give series of arylalkene‐ and arylalkyne‐substituted derivatives. This substitution pattern caused significant redshifting and broadening of the B band, tuning from 433–446 nm. Additionally the Q/B band intensity ratios show much higher values than observed for the parent porphyrin ZnTPP (0.20 vs. 0.03). Careful analysis of the electronic transitions using DFT and resonance Raman spectroscopy reveal that the substituent does not significantly perturb the electronic structure of the porphyrin core, which is still well described by Gouterman’s four‐orbital model. However, the substituents do play a role in elongating the conjugation length and this results in the observed spectral changes.  相似文献   

8.
A facile and fast approach, based on microwave‐enhanced Sonogashira coupling, has been employed to obtain in good yields both mono‐ and, for the first time, disubstituted push–pull ZnII porphyrinates bearing a variety of ethynylphenyl moieties at the β‐pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β‐mono‐ or disubstituted ZnII porphyrinates and meso‐disubstituted push–pull ZnII porphyrinates. We have obtained evidence that, although the HOMO–LUMO energy gap of the meso‐substituted push–pull dyes is lower, so that charge transfer along the push–pull system therein is easier, the β‐mono‐ or disubstituted push–pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β‐monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon‐to‐current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350–650 nm). In contrast, meso‐substitution produces IPCE spectra with two less intense and well‐separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge‐transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β‐monosubstituted ZnII porphyrinates extremely promising sensitizers for use in DSSCs.  相似文献   

9.
Enantioselective protonation with a catalytic enamine intermediate represents a challenging, yet fundamentally important process for the synthesis of α‐chiral carbonyls. We describe herein chiral primary‐amine‐catalyzed conjugate additions of indoles to both α‐substituted acroleins and vinyl ketones. These reactions feature enamine protonation as the stereogenic step. A simple primary–tertiary vicinal diamine 1 with trifluoromethanesulfonic acid (TfOH) was found to enable both of the reactions of acroleins and vinyl ketones with good activity and high enantioselectivity. Detailed mechanistic studies reveal that these reactions are rate‐limiting in iminium formation and they all involve a uniform H2O/acid‐bridged proton transfer in the stereogenic steps but divergent stereocontrol modes for the protonation stereoselectivity. For the reactions of α‐branched acroleins, facial selections on H2O‐bridged protonation determine the enantioselectivity, which is enhanced by an OH???π interaction with indole as uncovered by DFT calculations. On the other hand, the stereoselectivity of the reactions with vinyl ketones is controlled according to the Curtin–Hammett principle in the C? C bond‐formation step, which precedes a highly stereospecific enamine protonation.  相似文献   

10.
A triangulene‐based C2‐symmetric 33 π‐conjugated stable neutral π‐radical, 2. , which possesses two dicyanomethylene groups and one oxo group, has been designed, synthesized, and isolated as an analogue of tris(dicyanomethylene) derivative 1. and trioxo derivative TOT. with C3 symmetry. Effects of molecular‐symmetry reduction and electron‐accepting substituents on this fused polycyclic neutral π‐radical system were studied in terms of their molecular structure, electronic‐spin structure, and electrochemical and optical properties with the help of theoretical calculations. Interestingly, this system ( 2. ) has a four‐stage redox ability, like TOT. , as well as low frontier energy levels and a small SOMO–LUMO gap, similar to 1. , in spite of the loss of the degenerate LUMOs in symmetry‐lowered 2. , which is associated with the attachment of the weaker electron‐accepting oxo group instead of the dicyanomethylene group in 1. . These prominent results are attributable to the structural and electronic properties in the triangulene‐based highly delocalized fused polycyclic neutral π‐radical system.  相似文献   

11.
This article investigates the excited and charged states of three branched oligothiophenes with methyl–thienyl side groups as models to promote 3D arrangements. A comparison with the properties of the parent systems, linear all‐α,α‐oligothiophenes, is proposed. A wide variety of spectroscopic methods (i.e., absorption, emission, triplet–triplet transient absorption, and spectroelectrochemistry) in combination with DFT calculations have been used for this purpose. Whereas the absorption spectra are slightly blueshifted upon branching, both the emission spectra and triplet–triplet absorption spectra are moderately redshifted; this indicates a larger contribution of the β‐linked thienyl groups in the delocalization of the S1 and T1 states rather than into the S0 state. The delocalization through the α,β‐conjugated path was found to be crucial for the stabilization of the trication species in the larger branched systems, whereas the linear sexithiophene homologue can only be stabilized up to the dication species.  相似文献   

12.
β Helices—helices formed by alternating d,l ‐peptides and stabilized by β‐sheet hydrogen bonding—are found naturally in only a handful of highly hydrophobic peptides. This paper explores the scope of β‐helical structure by presenting the first design and biophysical characterization of a hydrophilic d,l ‐peptide, 1 , that forms a β helix in methanol. The design of 1 is based on the β‐hairpin/β helix—a new supersecondary that had been characterized previously only for hydrophobic peptides in nonpolar solvents. Incorporating polar residues in 1 provided solubility in methanol, in which the peptide adopts the expected β‐hairpin/β‐helical structure, as evidenced by CD, analytical ultracentrifugation (AUC), NMR spectroscopy, and NMR‐based structure calculations. Upon titration with water (at constant peptide concentration), the structure in methanol ( 1 m ) transitions cooperatively to an extended conformation ( 1 w ) resembling a cyclic β‐hairpin; observation of an isodichroic point in the solvent‐dependent CD spectra indicates that this transition is a two‐state process. In contrast, neither 1 m nor 1 w show cooperative thermal melting; instead, their structures appear intact at temperatures as high as 65 °C; this observation suggests that steric constraint is dominant in stabilizing these structures. Finally, the 1H NMR CαH spectroscopic resonances of 1 m are downfield‐shifted with respect to random‐coil values, a hitherto unreported property for β helices that appears to be a general feature of these structures. These results show for the first time that an appropriately designed β‐helical peptide can fold stably in a polar solvent; furthermore, the structural and spectroscopic data reported should prove useful in the future design and characterization of water‐soluble β helices.  相似文献   

13.
The reaction of β‐octaalkylporphyrins (octaethylporphyrin and etioporphyrin I) with ozone generated the corresponding heptaalkyloxazolochlorinhemiacetals in which a pyrrolic subunit of the porphyrins was replaced by an oxazoline moiety. Thus, a pyrrolic β‐carbon with its alkyl substituent was excised and replaced by an oxygen atom, and the neighboring β‐carbon was hydroxylated. This work clarifies the nature of the products first described by Fischer and De?eli?, in 1933, and verifies the work by Shulg′a and coworkers, from 1977. Furthermore, the chemistry of the oxazolochlorin hemiacetals was studied: They could be dehydroxylated or converted to alkyl acetals and gem‐dialkyl derivatives, all possessing chlorin‐type optical spectra. Their oxidative conversions generated a unique tetrahydrofuran‐linked oxazolochlorin dimer and a hexaethylporpholactone. The work expands on the knowledge of converting porphyrins to porphyrinoids of potential utility containing nonpyrrolic building heterocycles.  相似文献   

14.
15.
Reactions of 5-(p-aminophenyl)-10,15,20-triphenyl porphyrin (1) with Ru3(CO)12 or M(OCOCH3)2 (M=Ni,Mn) afforded metalloporphyrins(4-6),respectively.6-Deoxy-6-io-do-β-cyclodextrin(2) and mono(6-O-trifluoromethanesulfonyl) permethylated β-cyclodextrin(3) reacted with complexes 4-6 to give β-cyclodextrin bonded metal porphyrins (7-9) and permethylated β-cyclodextrin bonded me-tal porphyrins (10-12) respectively.These new complexes were identified by MS,IR,UV-visible and ^1H NMR spectra,and elemental analysis.  相似文献   

16.
A synthetic route to enantiomerically pure (1R,2S)‐1‐phenylphospholane‐2‐carboxylic acid ( 1 ), which is a phosphorus analogue of proline, has been established. A key step is the deprotonation–carboxylation of the 1‐phenylphospholane borane complex 3 by using sBuLi/1,2‐dipiperidinoethane (DPE). Configurational stability of the key intermediate, the amine‐coordinated α‐phosphinoalkyllithium borane complex 4 , was investigated by employing lithiodestannylation–carboxylation of both diastereomers of the 1‐phenyl‐2‐trimethylstannylphospholane borane complex 7 in the presence of several kinds of amines, and as a result, 4 was found to be configurationally labile even at ?100 °C. The key intermediate, the DPE‐coordinated trans‐1‐phenyl‐2‐phospholanyllithium borane complex 9 , was isolated, and the structure was identified by X‐ray crystal structure analysis. This is the first X‐ray crystal structure determined for an α‐monophosphinoalkyllithium borane complex. Remarkably, the alkyllithium complex is monomeric and tricoordinate at the lithium center with a slightly pyramidalized environment, and the existence of a Li? C bond (2.170 Å) has been confirmed. Moreover, 1H–7Li HOESY and 6Li NMR analyses suggested the structure of 9 in solution as well as the existence of an equilibrium between 9 , its cis isomer, and the ion pair 8 at room temperature, which was extremely biased towards 9 at ?100 °C. Finally, 1 was used as a chiral ligand in a palladium‐catalyzed allylic substitution, and the desired product was obtained in high yield with good enantioselectivity.  相似文献   

17.
Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl?NaCl, 3 LiCl?2 KCl, LiCl?RbCl and 3 LiCl?2 CsCl) at 873 K. Cyclic voltammetry was used to determine the reduction potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin‐layer spectroelectrochemistry were used to obtain the number of electrons transferred, reduction potentials and diffusion coefficients for Eu3+ in each eutectic melt. The reduction potentials determined by thin‐layer spectroelectrochemistry were essentially the same as those obtained using cyclic voltammetry. The diffusion coefficient for Eu3+ was the largest in the 3 LiCl?NaCl melt, showed a negative shift in the 3 LiCl?2 KCl melt, and was the smallest in the LiCl?RbCl and 3 LiCl?2 CsCl eutectic melts. The basic one‐electron reversible electron transfer for Eu3+/2+ was not affected by melt composition.  相似文献   

18.
本文合成了一种新型配位聚合物[Cu(pa)(vim)2]n(pa为邻苯二甲酸阴离子,vim为1-乙烯基-1H-咪唑),并用x射线单晶衍射仪和元素分析表征了其单晶结构。晶体属单斜晶系,C2/c空间群,晶胞参数分别为:a=1.6527(3) nm, b=0.81800(16) nm, c=1.4463(3) nm, β=113.19(3)°, V=1.7973(7) nm3, Z=4, Dc=1.537 g?cm-3。 [I>2σ(I)]时:R1=0.0476, wR2=0.1235,对所有数据:R1=0.0693, wR2=0.1355。配合物的结构中存在沿着c轴的zigzag聚合链。每个铜原子位于晶体中心,与两个N原子和两个O原子进行配位,形成了扭曲的平面结构。电化学研究表明在配合物中Cu2+/Cu+的氧化还原是一个单电子的准可逆过程。  相似文献   

19.
The design of structurally well‐defined anionic molecular metal–oxygen clusters, polyoxometalates (POMs), leads to inorganic receptors with unique and tunable properties. Herein, an α‐Dawson‐type silicotungstate, TBA8[α‐Si2W18O62] ? 3 H2O ( II ) that possesses a ?8 charge was successfully synthesized by dimerization of a trivacant lacunary α‐Keggin‐type silicotungstate TBA4H6[α‐SiW9O34] ? 2 H2O ( I ) in an organic solvent. POM II could be reversibly protonated (in the presence of acid) and deprotonated (in the presence of base) inside the aperture by means of intramolecular hydrogen bonds with retention of the POM structure. In contrast, the aperture of phosphorus‐centered POM TBA6[α‐P2W18O62]?H2O ( III ) was not protonated inside the aperture. The density functional theory (DFT) calculations revealed that the basicities and charges of internal μ3‐oxygen atoms were increased by changing the central heteroatoms from P5+ to Si4+, thereby supporting the protonation of II . Additionally, II showed much higher catalytic performance for the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde than I and III .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号