首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(17):2284-2290
This work demonstrates a facile in situ synthesis of cobalt–manganese mixed sulfide (CoMn‐S) nanocages on reduced graphene oxide (RGO) sheets by using a crystalline Co–Mn precursor as the sacrificial template. The CoMn‐S/RGO hybrid was applied as the anode for Li‐ion storage and exhibited superior specific capacity, excellent cycling performance, and great rate capability. In particular, lithium storage testing revealed that the hybrid delivered high discharge–charge capacities of 670 mA h g−1 at 1.0 A g−1 after 400 cycles and 925 mA h g−1 at 0.1 A g−1 after 300 cycles. The outstanding electrochemical performance of CoMn‐S/RGO is attributed to the close entanglement of nanocages with RGO nanosheets achieved by the synthetic method, which greatly improves ion/electron transport along the interfaces and efficiently mitigates volume dilation during lithium reactions. This rational design of both the composition and architecture of mixed metal sulfides can be expanded to other composite systems for high‐capacity Li‐ion batteries and provides a unique insight into the development of advanced hybrid electrode materials.  相似文献   

2.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

3.
Over the past decade, TiO2/graphene composites as electrodes for lithium ion batteries have attracted a great deal of attention for reasons of safety and environmental friendliness. However, most of the TiO2/graphene electrodes have large graphene content (9–40 %), which is bound to increase the cost of the battery. Logically, reducing the amount of graphene is a necessary part to achieve a green battery. The synthesis of TiO2 nanosheets under solvothermal conditions without additives is now demonstrated. Through mechanical mixing TiO2 nanosheets with different amount of reduced graphene (rGO), a series of TiO2@graphene composites was prepared with low graphene content (rGO content 1, 2, 3, and 5 wt %). When these composites were evaluated as anodes for lithium ion batteries, it was found that TiO2+3 wt % rGO manifested excellent cycling stability and a high specific capacity (243.7 mAh g?1 at 1 C; 1 C=167.5 mA g?1), and demonstrated superior high‐rate discharge/charge capability at 20 C.  相似文献   

4.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   

5.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

6.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

7.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

8.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

9.
The sodium‐ion storage properties of FeS–reduced graphene oxide (rGO) and Fe3O4‐rGO composite powders with crumpled structures have been studied. The Fe3O4‐rGO composite powder, prepared by one‐pot spray pyrolysis, could be transformed to an FeS‐rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4‐rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders were 740 and 442 mA h g?1, and their initial charge capacities were 530 and 165 mA h g?1, respectively. The discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders at the 50th cycle were 547 and 150 mA h g?1, respectively. The FeS‐rGO composite powder showed superior sodium‐ion storage performance compared to the Fe3O4‐rGO composite powder.  相似文献   

10.
Na‐ion batteries have been attracting intensive investigations as a possible alternative to Li‐ion batteries. Herein, we report the synthesis of SnS2 nanoplatelet@graphene nanocomposites by using a morphology‐controlled hydrothermal method. The as‐prepared SnS2/graphene nanocomposites present a unique two‐dimensional platelet‐on‐sheet nanoarchitecture, which has been identified by scanning and transmission electron microscopy. When applied as the anode material for Na‐ion batteries, the SnS2/graphene nanosheets achieved a high reversible specific sodium‐ion storage capacity of 725 mA h g?1, stable cyclability, and an enhanced high‐rate capability. The improved electrochemical performance for reversible sodium‐ion storage could be ascribed to the synergistic effects of the SnS2 nanoplatelet/graphene nanosheets as an integrated hybrid nanoarchitecture, in which the graphene nanosheets provide electronic conductivity and cushion for the active SnS2 nanoplatelets during Na‐ion insertion and extraction processes.  相似文献   

11.
Mesoporous silica synthesized from the cocondensation of tetraethoxysilane and silylated carbon dots containing an amide group has been adopted as the carrier for the in situ growth of TiO2 through an impregnation–hydrothermal crystallization process. Benefitting from initial complexation between the titania precursor and carbon dot, highly dispersed anatase TiO2 nanoparticles can be formed inside the mesoporous channel. The hybrid material possesses an ordered hexagonal mesostructure with p6mm symmetry, a high specific surface area (446.27 m2 g?1), large pore volume (0.57 cm3 g?1), uniform pore size (5.11 nm), and a wide absorption band between λ=300 and 550 nm. TiO2 nanocrystals are anchored to the carbon dot through Ti?O?N and Ti?O?C bonds, as revealed by X‐ray photoelectron spectroscopy. Moreover, the nitrogen doping of TiO2 is also verified by the formation of the Ti?N bond. This composite shows excellent adsorption capabilities for 2,4‐dichlorophenol and acid orange 7, with an electron‐deficient aromatic ring, through electron donor–acceptor interactions between the carbon dot and organic compounds instead of the hydrophobic effect, as analyzed by the contact angle analysis. The composite can be photocatalytically recycled through visible‐light irradiation after adsorption. The narrowed band gap, as a result of nitrogen doping, and the photosensitization effect of carbon dots are revealed to be coresponsible for the visible‐light activity of TiO2. The adsorption capacity does not suffer any clear losses after being recycled three times.  相似文献   

12.
Lithium–sulfur (Li?S) batteries are attractive owing to their higher energy density and lower cost compared with the universally used lithium‐ion batteries (LIBs), but there are some problems that stop their practical use, such as low utilization and rapid capacity‐fading of the sulfur cathode, which is mainly caused by the shuttle effect, and the uncontrollable deposition of lithium sulfide species. Herein, we report the design and fabrication of dual‐confined sulfur nanoparticles that were encapsulated inside hollow TiO2 spheres; the encapsulated nanoparticles were prepared by a facile hydrolysis process combined with acid etching, followed by “wrapping” with graphene (G?TiO2@S). In this unique composite architecture, the hollow TiO2 spheres acted as effective sulfur carriers by confining the polysulfides and buffering volume changes during the charge‐discharge processes by means of physical force from the hollow spheres and chemical binding between TiO2 and the polysulfides. Moreover, the graphene‐wrapped skin provided an effective 3D conductive network to improve the electronic conductivity of the sulfur cathode and, at the same time, to further suppress the dissolution of the polysulfides. As results, the G?TiO2@S hybrids exhibited a high and stable discharge capacity of up to 853.4 mA h g?1 over 200 cycles at 0.5 C (1 C=1675 mA g?1) and an excellent rate capability of 675 mA h g?1 at a current rate of 2 C; thus, G?TiO2@S holds great promise as a cathode material for Li?S batteries.  相似文献   

13.
A facile, one‐pot method for synthesizing spherical‐like metal sulfide–reduced graphene oxide (RGO) composite powders by spray pyrolysis is reported. The direct sulfidation of ZnO nanocrystals decorated on spherical‐like RGO powders resulted in ZnS–RGO composite powders. ZnS nanocrystals with a size below 20 nm were uniformly dispersed on spherical‐like RGO balls. The discharge capacities of the ZnS–RGO, ZnO–RGO, bare ZnS, and bare ZnO powders at a current density of 1000 mA g?1 after 300 cycles were 628, 476, 230, and 168 mA h g?1, respectively, and the corresponding capacity retentions measured after the first cycles were 93, 70, 40, and 21 %, respectively. The discharge capacity of the ZnS–RGO composite powders at a high current density of 4000 mA g?1 after 700 cycles was 437 mA h g?1. The structural stability of the highly conductive ZnS–RGO composite powders with ultrafine crystals during cycling resulted in excellent electrochemical properties.  相似文献   

14.
Herein, we report a facile and “green” synthetic route for the preparation of Ge@C core–shell nanocomposites by using a low‐cost Ge precursor. Field‐emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core–shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium‐ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g?1 and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g?1 after repeated cycling at a current density of 800 mA g?1 over 100 cycles.  相似文献   

15.
Mesoporous titania–organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co‐condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4‐bis(triethoxysilyl) benzene (BTEB) and 1,2‐bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200–360 m2 g?1) and pore volumes (0.3 cm3 g?1) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples. During calcination, there is a change in the TiIV coordination and an increase in the content of Si?O?Ti moieties in comparison with the uncalcined materials, which seems to be responsible for the enhanced photocatalytic activity of hybrid titania–silica materials as compared to both uncalcined samples and the control TiO2.  相似文献   

16.
TiO2–graphene oxide nanocomposites have been fabricated by the sol–gel technique for degradation of a typical cationic dye solution. The prepared photocatalysts were characterized by X‐ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric‐differential analyses, Brunauer–Emmett–Teller surface area measurement, and scanning and transmission electron microscopy. In addition, the photocatalytic activities of samples were evaluated by degradation of methylene blue aqueous solution under the sunlight irradiation. The change in color of solution was evaluated by the UV–vis spectroscopy, and the maximum photocatalytic decoloration (94%) was achieved within 60 min, which exceeded that of pure anatase under the same conditions. The results show that the nanocomposite containing 9.0 wt% of graphene oxide has the superior photocatalytic performance to either single‐phase anatase or other composites containing different amounts of graphene oxide. The experimental degradation data obtained from the batch tests were analyzed by a modified kinetic model, which predicted the performance with higher regression coefficients and lower relative errors. The distribution of TiO2 nanoparticles (<20 nm) on graphene oxide sheets is proposed to be the efficient factor in the homogeneous degradation of dye which can concomitantly improve the photocatalytic activity.  相似文献   

17.
Imidazole type ionic liquid, 1‐hexadecyl‐3‐methylimidazolium chloride, was used to template the synthesis of high‐surface‐area mesoporous silica under acidic conditions and crystalline titanium dioxide (TiO2) nanoparticles of anatase phase were inserted utilizing a solvent evaporation‐induced method. The surface area of more than 700 m2 g?1 was obtained after TiO2 impregnation. Further, the polyoxometalate, 12‐tungstophosphoric acid (PW12) was dispersed on the surface of TiO2 to form PW12–TiO2–silica hybrid catalytic materials. The catalytic activity of this hybrid material was tested for solvent‐free, aerobic oxidation of n‐hexadecane. The experimental investigation shows that PW12–TiO2 nanocrystals did not block the pore channels and gave good conversion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Compositing amorphous TiO2 with nitrogen‐doped carbon through Ti? N bonding to form an amorphous TiO2/N‐doped carbon hybrid (denoted a‐TiO2/C? N) has been achieved by a two‐step hydrothermal–calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a‐TiO2/C? N hybrid has a surface area as high as 108 m2 g?1 and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g?1 at a current rate of 1 C and a reversible capacity over 156 mA h g?1 at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2. This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N‐doped carbon.  相似文献   

19.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

20.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号