首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of metal–organic frameworks based on a flexible, highly charged Bpybc ligand, namely 1? Mn?OH?, 2? Mn?SO42?, 3? Mn?bdc2?, 4? Eu?SO42? (H2BpybcCl2=1,1′‐bis(4‐carboxybenzyl)‐4,4′‐bipyridinium dichloride, H2bdc=1,4‐benzenedicarboxylic acid) have been obtained by a self‐assembly process. Single‐crystal X‐ray‐diffraction analysis revealed that all of these compounds contained the same n‐fold 2D→3D Borromean‐entangled topology with irregular butterfly‐like pore channels that were parallel to the Borromean sheets. These structures were highly tolerant towards various metal ions (from divalent transition metals to trivalent lanthanide ions) and anion species (from small inorganic anions to bulky organic anions), which demonstrated the superstability of these Borromean linkages. This non‐interpenetrated entanglement represents a new way of increasing the stability of the porous frameworks. The introduction of bipyridinium molecules into the porous frameworks led to the formation of cationic surface, which showed high affinities to methanol and water vapor. The distinct adsorption and desorption isotherms of methanol vapor in four complexes revealed that the accommodated anion species (of different size, shape, and location) provided a unique platform to tune the environment of the pore space. Measurements of the adsorption of various organic vapors onto framework 1? Mn?OH? further revealed that these pores have a high adsorption selectivity towards molecules with different sizes, polarities, or π‐conjugated structures.  相似文献   

2.
We report two isoreticular 3D peptide‐based porous frameworks formed by coordination of the tripeptides Gly‐L ‐His‐Gly and Gly‐L ‐His‐L ‐Lys to CuII which display sponge‐like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbone, can be post‐synthetically modified to produce urea‐functionalised networks by following methodologies typically used for metal–organic frameworks built from more rigid “classical” linkers.  相似文献   

3.
Covalent post‐synthetic modification is a versatile method for gaining high‐level synthetic control over functionality within porous metal–organic frameworks and for generating new materials not accessible through one‐step framework syntheses. Here we apply this topotactic synthetic approach to a porous spin crossover framework and show through detailed comparison of the structures and properties of the as‐synthesised and covalently modified phases that the modification reaction proceeds quantitatively by a thermally activated single‐crystal‐to‐single‐crystal transformation to yield a material with lowered spin‐switching temperature, decreased lattice cooperativity, and altered color. Structure–function relationships to emerge from this comparison show that the approach provides a new route for tuning spin crossover through control over both outer‐sphere and steric interactions.  相似文献   

4.
As a new type of highly ordered porous crystalline material, metal‐organic frameworks (MOFs) have been extensively studied in many fields due to their high specific surface area and porosity, flexible modifiability and tailorability. After nearly 20 years of development, the synthesis of MOF materials has gradually evolved from exploration and trial to precise design. The synthesis method has also evolved from an early one‐step synthesis to the coexistence of various synthesis strategies, including functional‐oriented microstructural design optimization, pore size adjustment, and secondary structural unit modification, enabling MOF materials to expand their potential applications in many fields. In this review, we mainly discuss the pore regulation of function‐oriented MOF through different synthesis strategies, including (1) direct synthesis, (2) post‐synthesis modification (PSM), (3) building block replacement (BBR), (4) pore space partition (PSP), (5) construction of multi‐mesoporous MOF, (6) dynamic septal ligand insertion, and discuss the relationship between related performance optimization through framework structure and pore environment/size optimization.  相似文献   

5.
3D frameworks are important because of their potential to combine the advantageous properties of porous materials with those associated with polymers. A series of novel 3D aromatic frameworks are presented that incorporate the heterocycles thiophene, selenophene, and tellurophene. The specific surface area and pore width of frameworks depends on the element that is used to build the framework. Optoelectronic properties are element‐dependent, with heavy atoms red‐shifting the optical properties and decreasing the energy gap of the solid. The metalloid nature of tellurophene allows the properties of this material to be tuned based on its oxidation state, even as an insoluble solid. The incorporation of the optoelectronic active thiophene, selenophene, and tellurophene units and the effect that they have on properties was studied. A supercapcitor device was fabricated using these frameworks, showing that these 3D frameworks are promising for optoelectronic uses.  相似文献   

6.
3D frameworks are important because of their potential to combine the advantageous properties of porous materials with those associated with polymers. A series of novel 3D aromatic frameworks are presented that incorporate the heterocycles thiophene, selenophene, and tellurophene. The specific surface area and pore width of frameworks depends on the element that is used to build the framework. Optoelectronic properties are element‐dependent, with heavy atoms red‐shifting the optical properties and decreasing the energy gap of the solid. The metalloid nature of tellurophene allows the properties of this material to be tuned based on its oxidation state, even as an insoluble solid. The incorporation of the optoelectronic active thiophene, selenophene, and tellurophene units and the effect that they have on properties was studied. A supercapcitor device was fabricated using these frameworks, showing that these 3D frameworks are promising for optoelectronic uses.  相似文献   

7.
The rational design of metal–organic frameworks (MOFs) with hollow features and tunable porosity at the nanoscale can enhance their intrinsic properties and stimulates increasing attentions. In this Communication, we demonstrate that methanol can affect the coordination mode of ZIF‐67 in the presence of Co2+ and induces a mild phase transformation under solvothermal conditions. By applying this transformation process to the ZIF‐67@ZIF‐8 core–shell structures, a well‐defined hollow Zn/Co ZIF rhombic dodecahedron can be obtained. The manufacturing of hollow MOFs enables us to prepare a noble metal@MOF yolk‐shell composite with controlled spatial distribution and morphology. The enhanced gas storage and porous confinement that originate from the hollow interior and coating of ZIF‐8 confers this unique catalyst with superior activity and selectivity toward the semi‐hydrogenation of acetylene.  相似文献   

8.
Tailoring the morphology of macroporous structures remains one of the biggest challenges in material synthesis. Herein, we present an innovative approach for the fabrication of custom macroporous materials in which pore size varies throughout the structure by up to an order of magnitude. We employed a valve‐based flow‐focusing junction (vFF) in which the size of the orifice can be adjusted in real‐time (within tens of milliseconds) to generate foams with on‐line controlled bubble size. We used the junction to fabricate layered and smoothly graded porous structures with pore size varying in the range of 80–800 μm. Additionally, we mounted the vFF on top of an extrusion printer and 3D‐printed constructs characterized by a predefined 3D geometry and a controlled, spatially varying internal porous architecture, such as a model of a bone. The presented technology opens new possibilities in macroporous material synthesis with potential applications ranging from tissue engineering to aerospace industry and construction.  相似文献   

9.
A range of porous carbon‐based monolithic (PCM) rods with flow‐through pore sizes of 1, 2, 5 and 10 μm, were produced using a silica particle template method. The rods were characterised using SEM and energy‐dispersive X‐ray spectroscopy, BET surface area and porous structure analysis, dilatometry and thermal gravimetry. SEM evaluation of the carbon monolithic structures revealed an interconnected rigid bimodal porous structure and energy‐dispersive X‐ray spectroscopy analysis verified the quantitative removal of the embedded silica beads. The specific surface areas of the 1, 2, 5 and 10 μm rods were 178, 154, 84 and 125 m2/g after pyrolysis and silica removal, respectively. Shrinkage of the monolithic rods during pyrolysis is proportional to the particle size of the silica used and ranged from 9 to 12%. Mercury porosimetry showed a narrow distribution of pore sizes, with an average of ~700 nm for the 1 μm carbon monolith. The suitability of bare and surface oxidised PCM rods for the use as a stationary phase for reversed and normal phase LC was explored. The additional modification of PCM rods with gold micro‐particles followed by 6‐mercaptohexanoic acid was performed and ion‐exchange properties were evaluated.  相似文献   

10.
The resistance of metal–organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al‐MIL‐101‐NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long‐term stability of Al‐MIL‐101‐URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al‐MIL‐101‐URPh decomposed at least 12‐times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2O sorption measurements, powder X‐ray diffraction, thermogravimetric and chemical analysis as well as solid‐state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m2 g?1 for Al‐MIL‐101‐URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity‐dependent uptake of Al‐MIL‐101‐URPh is slowed and occurs at higher relative humidity values. In combination with 1H‐27Al D ‐HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.  相似文献   

11.
This study describes a facile breath‐figure method for the preparation of honeycomb‐like porous TiO2 films with an organometallic small‐molecule precursor. Multiple characterization techniques have been used to investigate the porous films and a mechanism for the formation process of porous TiO2 films through the breath‐figure method is proposed. The pore size of the TiO2 films could be modulated by varying the experimental parameters, such as the concentration of titanium n‐butoxide (TBT) solution, the content of cosolvent, and the air flow rate. In vitro cell‐culture experiments indicate that NIH 3T3 fibroblast cells seeded on the honeycomb‐like porous TiO2 films show good adhesion, spreading, and proliferation behaviors, which suggests that honeycomb‐like porous TiO2 films are an attractive biomaterial for surface modification of titanium and its alloys implants in tissue engineering to enhance their biocompatibility and bioactivity.  相似文献   

12.
Metal–organic frameworks (MOFs) are among the most attractive porous materials known today, exhibiting very high surface areas, tuneable pore sizes and shapes, adjustable surface functionality, and flexible structures. Advances in the formation of MOF crystals, and in their subsequent assembly into more complex and/or composite superstructures, should expand the scope of these materials in many applications (e.g., drug delivery, chemical sensors, selective reactors and removal devices, etc.) and facilitate their integration onto surfaces and into devices. This Concept article aims to showcase recently developed synthetic strategies to control the one‐, two‐ and three‐dimensional (1‐, 2‐ and 3D) organisation of MOF crystals.  相似文献   

13.
Single‐walled carbon nanotubes (SWNTs) that are covalently functionalized with benzoic acid (SWNT‐PhCOOH) can be integrated with transition‐metal ions to form 3D porous inorganic–organic hybrid frameworks (SWNT‐Zn). In particular, N2‐adsorption analysis shows that the BET surface area increases notably from 645.3 to 1209.9 m2 g?1 for SWNTs and SWNT‐Zn, respectively. This remarkable enhancement in the surface area of SWNT‐Zn is presumably due to the microporous motifs from benzoates coordinated to intercalated zinc ions between the functionalized SWNTs; this assignment was also corroborated by NLDFT pore‐size distributions. In addition, the excess‐H2‐uptake maximum of SWNT‐Zn reaches about 3.1 wt. % (12 bar, 77 K), which is almost three times that of the original SWNTs (1.2 wt. % at 12 bar, 77 K). Owing to its inherent conductivity and pore structure, as well as good dispersibility, SWNT‐Zn is an effective candidate as a sensitive electrochemical stripping voltammetric sensor for organophosphate pesticides (OPs): By using solid‐phase extraction (SPE) with SWNT‐Zn‐modified glassy carbon electrode, the detection limit of methyl parathion (MP) is 2.3 ng mL?1.  相似文献   

14.
Three new metal‐organic frameworks (MOFs) were prepared by solvo(hydro)thermolysis and further characterized as framework isomers. The structural transformation from non‐porous to porous MOFs and the purity of these products can be modulated by controlling the reaction temperature. The periodic‐increased porosity observed was further confirmed by CO2 adsorption isotherms. Owing to the presence of acylamide groups in the pore walls and the flexible nature of the skeleton of these MOFs, highly selective CO2 adsorption over N2 was observed, as well as structure‐dependent periodic varieties in luminescence properties.  相似文献   

15.
It is highly desirable to develop electroactive organic materials and their derivatives as green alternatives of cathodes for sustainable and cost‐effective lithium‐ion batteries (LIBs) in energy storage fields. Herein, compact two‐dimensional coupled graphene and porous polyaryltriazine‐derived frameworks with tailormade pore structures are fabricated by using various molecular building blocks under ionothermal conditions. The porous nanosheets display nanoscale thickness, high specific surface area, and strong coupling of electroactive polyaryltriazine‐derived frameworks with graphene. All these features make it possible to efficiently depress the dissolution of redox moieties in electrolytes and to boost the electrical conductivity of whole electrode. When employed as a cathode in LIBs, the two‐dimensional porous nanosheets exhibit outstanding cycle stability of 395 mAh g?1 at 5 A g?1 for more than 5100 cycles and excellent rate capability of 135 mAh g?1 at a high current density of 15 A g?1.  相似文献   

16.
The integration of fast electron transport and large effective surface area is critical to attaining higher gains in the nanostructured photovoltaic devices. Here, we report facilitated electron transport in the quasi‐two‐dimensional (Q2D) porous TiO2. Liquid electrolyte dye‐sensitized solar cells were prepared by utilizing photoanodes based on the Q2D porous substructures. Due to electron confinement in a microscale porous medium, directional diffusion toward collecting electrode is induced into the electron transport. Our measurements based on the photocurrent and photovoltage time‐of‐flight transients show that at higher Fermi levels, the electron diffusion coefficient in the Q2D porous TiO2 is about one order of magnitude higher when compared with the conventional layer of porous TiO2. The results show that microstructuring of the porous TiO2 leads to an approximately threefold improvement in the electron diffusion length. Such a modification may considerably affects the electrical functionality of moderate or low performance dye‐sensitized solar cells for which the internal gain or collection efficiency is typically low.  相似文献   

17.
Water‐soluble three‐dimensional (3D) polymers are structurally ideal for the construction of ordered porous materials for in‐situ and tunable loading and release of guests. For many years, studies on ordered porous materials have been confined to crystalline solids. Since 2014, self‐assembly has been developed as a robust strategy for the preparation of water‐soluble 3D polymers that possess defined and intrinsic porosity. Through the encapsulation of cucurbit[8]uril for aromatic dimers, ordered diamondoid supramolecular organic frameworks can be assembled from tetrahedral monomers. With [Ru(bipy)3]2+‐derived octahedral complexes as precursors, cubic supramolecular metal‐organic frameworks have been assembled. One supramolecular organic framework has also been utilized to prepare the first homogeneous covalent organic framework through the [2+2] alkene cycloaddition, whereas the quantitative formation of the hydrazone bonds can be utilized to synthesize flexible porous organic frameworks. The new water‐soluble ordered and flexible polymeric frameworks are able to include drugs and biomacromolecules to accomplish in situ loading and intracellular delivery and to enrich photosensitizers and catalysts to enhance discrete visible light‐induced reactions. This review highlights the advances.  相似文献   

18.
Designing organic components that can be used to construct porous materials enables the preparation of tailored functionalized materials. Research into porous materials has seen a resurgence in the past decade as a result of finding of self‐standing porous molecular crystals (PMCs). Particularly, a number of crystalline systems with permanent porosity that are formed by self‐assembly through hydrogen bonding (H‐bonding) have been developed. Such systems are called hydrogen‐bonded organic frameworks (HOFs). Herein we systematically describe H‐bonding patterns (supramolecular synthons) and molecular structures (tectons) that have been used to achieve thermal and chemical durability, a large surface area, and functions, such as selective gas sorption and separation, which can provide design principles for constructing HOFs with permanent porosity.  相似文献   

19.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

20.
Flexible metal–organic frameworks (MOFs) are highly desirable in host–guest chemistry owing to their almost unlimited structural/functional diversities and stimuli‐responsive pore architectures. Herein, we designed a flexible Zr‐MOF system, namely PCN‐700 series, for the realization of switchable catalysis in cycloaddition reactions of CO2 with epoxides. Their breathing behaviors were studied by successive single‐crystal X‐ray diffraction analyses. The breathing amplitudes of the PCN‐700 series were modulated through pre‐functionalization of organic linkers and post‐synthetic linker installation. Experiments and molecular simulations confirm that the catalytic activities of the PCN‐700 series can be switched on and off upon reversible structural transformation, which is reminiscent of sophisticated biological systems such as allosteric enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号