首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous hollow nanostructures have attracted intensive interest owing to their unique structure and promising applications in various fields. A facile hydrothermal synthesis has been developed to prepare porous hollow nanostructures of silicate materials through a sacrificial‐templating process. The key factors, such as the concentration of the free metal cation and the alkalinity of the solution, are discussed. Porous hollow nanostructures of magnesium silicate, nickel silicate, and iron silicate have been successfully prepared by using SiO2 spheres as the template, as well as a silicon source. Several yolk–shell structures have also been fabricated by a similar process that uses silica‐coated composite particles as a template. As‐prepared mesoporous magnesium silicate hollow spheres showed an excellent ability to remove Pb2+ ions in water treatment owing to their large specific surface and unique structures.  相似文献   

2.
Micro/nanoscale magnesium silicate hollow spheres were synthesized by using silica colloidal spheres as a chemical template in one pot. The hollow spherical structure, consisting of well‐separated nanoscale units, was microscale as a whole and could be easily handled in solution. The as‐synthesized magnesium silicate hollow spheres with large specific surface area showed availability for the removal of organic and heavy‐metal ions efficiently from waste water. Importantly, the micro/nanoscale magnesium silicate hollow spheres that had adsorbed organic pollutants could be regenerated by calcination and used repeatedly in pollutant removal. Magnesium silicate hollow spheres synthesized by a scaled‐up chemical template method may have potential applications in removing cationic dyes and heavy‐metal ions from waste water.  相似文献   

3.
Mesoporous silica materials with a variety of morphologies, such as monodisperse microspheres, gigantic hollow structures comprising a thin shell with a hole, and gigantic hollow structures consisting of an outer thin shell and an inner layer composed of many small spheres, have been readily synthesized in mixed water-ethanol solvents at room temperature using cetyltrimethylammonium bromide (CTAB) as the template. The obtained mesoporous silica generally shows a disordered mesostructure with typical average pore sizes ranging from 3.1 to 3.8 nm. The effects of the water-to-ethanol volume ratio (r), the volume content of tetraethyl orthosilicate TEOS (x), and the CTAB concentration in the solution on the final morphology of the mesoporous silica products have been investigated. The growth process of gigantic hollow shells of mesoporous silica through templating emulsion droplets of TEOS in mixed water-ethanol solution has been monitored directly with optical microscopy. Generally, the morphology of mesoporous silica can be regulated from microspheres through gigantic hollow structures composed of small spheres to gigantic hollow structures with a thin shell by increasing the water-to-ethanol volume ratio, increasing the TEOS volume content, or decreasing the CTAB concentration. A plausible mechanism for the morphological regulation of mesoporous silica by adjusting various experimental parameters has been put forward by considering the existing state of the unhydrolyzed and partially hydrolyzed TEOS in the synthesis system.  相似文献   

4.
Core–shell‐structured mesoporous silica spheres were prepared by using n‐octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core–shell‐structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double‐layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer–Emmett–Teller (BET) area and larger pore size.  相似文献   

5.
We have investigated the structural transformation of solid silica spheres into various more complex spherical structures including flower‐like, thick or thin nanosheet‐shelled and porous shelled spheres. In the absence of organic additives, sodium salts contained in this inorganic reaction system apparently direct the silica dissolution and regrowth of dissolved silicate at the nanometer‐scale, leading to the formation of a nanosheet network rather than solid aggregates. Subsequent removal of the salts by simple water washing results in voids in the siloxane network and a significant availability of surface silanol groups so that the resulting nanosheets and spheres composed of them possess large surface areas, pore volumes, and morphological flexibility, which can be varied by an applied stimulus. The results represent a rare example of the transformation of a simple silicate structure into a much more complex spherical structure involving a purely inorganic reaction system.  相似文献   

6.
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.  相似文献   

7.
中空纳米二氧化硅微球的制备及表征   总被引:2,自引:0,他引:2  
本文介绍了一种制备中空纳米二氧化硅微球的新方法。利用模板首先合成介孔纳米二氧化硅微球,再用水热反应法,成功制备了非功能化和巯基、氨基功能化中空纳米二氧化硅微球。利用透射电子显微镜,热重分析等手段对其形貌进行了表征。另外,对中空介孔纳米二氧化硅微球的形成机制进行了探讨。  相似文献   

8.
张娟  王晴  李艺  李宝宗 《化学研究》2014,(3):280-283,287
合成了手性阳离子型两亲性小分子化合物,利用圆二色谱分析了其在水中形成的自组装体的结构;以该化合物的自组装体为模板,在正丙醇和氨水的混合溶剂中制备得到了介孔二氧化硅空心球;利用扫描电镜、透射电镜、X射线衍射仪以及氮气吸附-脱附试验装置分析了二氧化硅空心球的形貌及孔结构.结果表明,两亲性小分子在水中形成的自组装体呈现手性堆积;合成的介孔二氧化硅空心球的直径约为600~800nm,壁厚约为100~150nm,其孔道垂直于球的表面,孔径约为3.0nm,比表面积约为306m2·g-1.正丙醇作为模板控制二氧化硅空心球的空腔尺寸和形貌,而两亲性小分子的自组装体作为模板控制放射状孔道的形貌和尺寸.  相似文献   

9.
The inner‐surface functionalization of hollow silica spheres has rarely been reported and is still a challenging topic. Herein, we report a deacetalization–Henry cascade reaction catalyzed by dual‐functionalized mesoporous silica hollow nanospheres with basic amine groups (?NH2) on the internal shell and carboxylic acid groups (?COOH) on the external shell. The selective functionalization has been realized by a combination of “step‐by‐step post‐grafting” and “cationic surfactant‐assisted selective etching” strategy. Compared to unisolated catalyst, the selectively isolated acidic and basic dual catalyst provides excellent catalytic performance for the deacetalization–Henry cascade reaction in terms of both activity (>99 %) and selectivity (95 %).  相似文献   

10.
Herein, we demonstrate a facile approach to manganese‐doped highly ordered mesoporous silicate with oxidation‐suppression function. As biocompatible supports of guest ions, the ordered mesoporous silicate was synthesized by evaporation‐induced self‐assembly. The phase‐transition from disordered to lamellar structures in the highly ordered mesoporous structure of these porosity‐tuned materials was controlled by adjusting the concentration of a lab‐made polystyrene‐b‐polyethylene oxide copolymer. Manganese was successfully incorporated as a guest in the hexagonally packed mesoporous silicate by using an ultrasound‐assisted technique. The incorporation of manganese ions into the pores of a mesoporous silicate support could be induced for host–guest functional applications. Manganese‐doped mesoporous silicate structures have been examined for their use as antioxidizing agents by electron spin resonance (ESR) measurements and radical‐scavenging tests. The manganese atoms in the mesoporous structures could act in a free‐radical‐scavenging capacity, much like manganese nanoparticles. The high efficiency of their oxidation‐suppression function is extended for application to catalytic products.  相似文献   

11.
We report an interesting approach for efficient synthesis of SnO(2) hollow spheres inside mesoporous silica "nanoreactors". The as-prepared products are shown to have a uniform size distribution and good structural stability. When evaluated for their lithium storage properties, these SnO(2) hollow spheres manifest improved capacity retention.  相似文献   

12.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

13.
Hollow mesoporous carbon spheres with magnetic cores are directly replicated from hollow mesoporous aluminosilicate spheres with hematite cores by a simple incipient‐wetness impregnation technique. The amount of magnetic cores and the saturation magnetization value can be easily tuned by changing the concentration of iron nitrate solution used in the synthesis procedure. As‐prepared hollow mesoporous carbon spheres with magnetic cores are used as separable bilirubin adsorbents and show very good adsorptive properties. The characteristics of as‐prepared composites are examined by XRD, N2 sorption, TEM, vibrating‐sample magnetometry, and UV/Vis spectroscopy.  相似文献   

14.
Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO(2) hollow structures through a simple solvothermal reaction. The structure-directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO(2) hollow-sphere formation. At the same time, the nanostructures of the obtained TiO(2) are highly dependent on the isoelectric points (pI) of amino acids. Their molecular-structure variations can lead to pI differences and significantly influence the final TiO(2) morphologies. Higher-pI amino acids (e.g., L-lysine and L-arginine) have better structure-directing abilities to generate nanosheet-assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as-prepared structures to porous nanoparticle-assembled hollow TiO(2) and TiO(2)/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye-sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules.  相似文献   

15.
This article presents a novel and facile preparation method of hollow silica spheres with loading small silica inside. In this approach, positively charged SiO2/polystyrene core‐shell composite particles were synthesized first, when the silica shells from the sol‐gel process of tetraethoxysilane were then coated on the surfaces of composite particles via electrostatic interaction, the polystyrene was dissolved subsequently even synchronously in the same medium to form hollow silica spheres with small silica cores. TEM, SEM, and FTIR measurements were used to characterize these composite spheres. Based on this study, some inorganic or organic compounds could be loaded into these hollow silica spheres. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3431–3439, 2007  相似文献   

16.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

17.
中空介孔结构因具有丰富的内部空间以及多孔渗透性外壳等优势,在催化、能源储存与转化及生物医药等领域得到了广泛应用.然而,目前仍然缺少高效、简便且绿色的合成中空介孔结构的方法.本文以柠檬酸钠胶体颗粒作为模板,通过十六烷基三甲基溴化氨(Cetyltrimethylammonium bromide, CTAB)胶束与正硅酸四乙酯(Tetraethyl orthosilicate, TEOS)的水解低聚物在胶体颗粒表面进行界面共组装,直接生长介孔二氧化硅壳层;然后通过简便的醇洗和水洗分别除去CTAB胶束和柠檬酸钠胶体颗粒后,得到中空介孔结构.进一步研究表明,负电荷的柠檬酸钠胶体颗粒与CTAB胶束之间的静电相互作用是诱导氧化硅低聚物在颗粒表面进行交联组装的关键.基于此,通过控制生长时间实现了对中空介孔结构形貌和壳层厚度的精确调控.所得中空介孔二氧化硅纳米球可以显著增强物质的扩散传输,是理想的催化剂载体,负载金纳米颗粒后可以高效催化4-硝基苯酚的还原反应.研究结果为中空介孔材料的绿色简便合成提供了思路.  相似文献   

18.
This article presents a facile, effective, mild synthesis process for well‐defined hollow spheres by using cationic polystyrene (PS) submicro‐particles as templates. In this approach, the cationic PS templates can be first prepared via emulsifier‐free polymerization by using the cationic monomer 2‐(methacryloyloxy) ethyltrimethylammonium chloride as comonomer, then, the silica shells from the sol‐gel process of tetraethoxysilane were coated on the surfaces of template particles via electrostatic interaction, finally the PS was dissolved in situ by modification of the reaction conditions in the same medium to form monodisperse hollow silica spheres with controlled shell thickness. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, Brunauer‐Emmett‐Teller, transmission electron microscopy, and scanning electron microscope measurements were used to characterize these hollow silica spheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1332–1338, 2010  相似文献   

19.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

20.
The formation of mesoporous TiO2 spheres via a facile chemical process   总被引:6,自引:0,他引:6  
The mesoporous TiO(2) solid and hollow spheres have been synthesized via a controllable and simple chemical route. Structural characterization indicates that these TiO(2) mesoporous spheres after calcined at 500 degrees C have an obvious mesoporous structure with the diameters of 200-300 nm for solid spheres and 200-500 nm for hollow spheres. The average pore sizes and BET surface areas of the mesoporous TiO(2) solid and hollow spheres are 6.8, 7.0 nm and 162, 90 m(2)/g, respectively. Optical adsorption investigation shows that TiO(2) solid and hollow spheres possess a direct band gap structure with the optical band gap of 3.68 and 3.75 eV, respectively. A possible formation mechanism for TiO(2) solid and hollow spheres is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号