首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hierarchical SnO2 with double carbon coating (polypyrrole-derived carbon and reduced graphene oxide in order) composites have been successfully synthesized as anode materials for lithium ion batteries. The composites were characterized and examined by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, cyclic voltammetry, and galvanostatic discharge/charge tests. Such a novel nanostructure can not only provide a high conductivity but also prevent aggregation of SnO2 nanoparticles, leading to the improvement of the cycling performance. Comparing with pure hierarchical SnO2 and polypyrrole-derived carbon-coated hierarchical SnO2, hierarchical SnO2 with double carbon coating composite exhibits higher lithium storage capacities and better cycling performance, 554.8 mAh g?1 after 50 cycles at a current density of 250 mA g?1. In addition, the rate performance of hierarchical SnO2 with double carbon coating composite is also very well. For all the improved performances, this double carbon coating architecture may provide some references for other electrode materials of lithium ion batteries.  相似文献   

2.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

3.
Hierarchical SnO2 hollow spheres self‐assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2‐based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries.  相似文献   

4.
A hierarchical fibrous SnO2/carbon nanocomposite composed of fine SnO2 nanocrystallites immobilized as a thin layer on a carbon nanofiber surface was synthesized employing natural cellulose substance as both scaffold and carbon source. It was achieved by calcination/carbonization of the as‐deposited SnO2‐gel/cellulose hybrid in an argon atmosphere. As being employed as an anode material for lithium‐ion batteries, the porous structures, small SnO2 crystallite sizes, and the carbon buffering matrix possessed by the nanocomposite facilitate the electrode–electrolyte contact, promote the electron transfer and Li+ diffusion, and relieve the severe volume change and aggregation of the active particles during the charge/discharge cycles. Hence, the nanocomposite showed high reversible capacity, significant cycling stability, and rate capability that are superior to the nanotubular SnO2 and SnO2 sol–gel powder counter materials. For such a composite with 27.8 wt % SnO2 content and 346.4 m2 g?1 specific surface area, a capacity of 623 mAh g?1 was delivered after 120 cycles at 0.2 C. Further coating of the SnO2/carbon nanofibers with an additional carbon layer resulted in an improved cycling stability and rate performance.  相似文献   

5.
A large‐scale hierarchical assembly route is reported for the formation of SnO2 on the nanoscale that contains rigid and robust spheres with irregular channels for rapid access of Li ions into the hierarchically structured interiors. Large volume changes during the process of Li insertion and extraction are accommodated by the SnO2 nanoflake spheres’ internal porosity. The hierarchical SnO2 nanoflake spheres exhibit good lithium storage properties with high capacity and long‐lasting performance when used as lithium‐ion anodes. A reversible capacity of 517 mA h g?1, still greater than the theoretical capacity of graphite (372 mA h g?1), after 50 charge–discharge cycles is attained. Meanwhile, the synthesis process is simple, inexpensive, safe, and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power.  相似文献   

6.
Hierarchical MoS2 shells supported on carbon spheres (denoted as C@MoS2) have been synthesized through a one‐step hydrothermal method. The obtained hierarchical C@MoS2 microspheres simultaneously integrate the structural and compositional design rationales for high‐energy electrode materials based on two‐dimensional (2D) nanosheets. When evaluated as an anode material for lithium‐ion batteries (LIBs), the hierarchical C@MoS2 microspheres manifest high specific capacity, enhanced cycling stability and good rate capability.  相似文献   

7.
Hierarchical LiV3O8 nanofibers, assembled from nanosheets that have exposed {100} facets, have been fabricated by using electrospinning combined with calcination. The formation mechanism of hierarchical nanofibers was investigated by X‐ray diffraction and scanning electron microscopy. Poly(vinyl alcohol) (PVA) played a dual role in the formation of the nanofibers: besides acting as the template for forming the fibers, it effectively prevented the aggregation of LiV3O8 nanoparticles, thereby allowing them to grow into small nanosheets with exposed {100} facets owing to the self‐limitation property of LiV3O8. This nanostructure is beneficial for the insertion/extraction of lithium ions. Meanwhile, the {100} facets have fewer and smaller channels, which may effectively alleviate proton co‐intercalation into the electrode materials. Hence, the hierarchical LiV3O8 nanofibers exhibit higher discharge capacities and better cycling stabilities as the anode electrode material for aqueous lithium‐ion batteries than those reported previously. We demonstrate that these hierarchical nanofibers have promising potential applications in aqueous lithium‐ion batteries.  相似文献   

8.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

9.
Layered protonated titanates (LPTs), a class of interesting inorganic layered materials, have been widely studied because of their many unique properties and their use as precursors to many important TiO2‐based functional materials. In this work, we have developed a facile solvothermal method to synthesize hierarchical spheres (HSs) assembled from ultrathin LPT nanosheets. These LPT hierarchical spheres possess a porous structure with a large specific surface area and high stability. Importantly, the size and morphology of the LPT hierarchical spheres are easily tunable by varying the synthesis conditions. These LPT HSs can be easily converted to anatase TiO2 HSs without significant structural alteration. Depending on the calcination atmosphere of air or N2, pure anatase TiO2 HSs or carbon‐supported TiO2 HSs, respectively, can be obtained. Remarkably, both types of TiO2 HSs manifest excellent cyclability and rate capability when evaluated as anode materials for high‐power lithium‐ion batteries.  相似文献   

10.
Hybrid SnO2/nanocarbon families (graphene nanosheets (GNSs), single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and carbon nanospheres (CNSs)) have been synthesized by a similar wet chemical method. SnO2 nanoparticles are uniformly loaded on the surface of the nanocarbon families. As lithium battery anodes, their electrochemical properties of the reaction of lithium are investigated under the same conditions. To compare between them, SnO2/GNSs have the largest capacity; SnO2/GNSs and SnO2/SWCNTs have high cyclability; and SnO2/MWCNTs can maintain the capacity at high current density. Such behaviors are ascribed to their surface-to-volume ratio, structure flexibility, ion mobility and electron conductivity. The present results are the bases for their practical applications in lithium-ion battery anodes.  相似文献   

11.
Despite the great advantages of hollow structures as electrodes for lithium‐ion batteries, one apparent common drawback which is often criticized is their compromised volumetric energy density due to the introduced hollow interior. Here, we design and synthesize bowl‐like SnO2@carbon hollow particles to reduce the excessive hollow interior space while retaining the general advantages of hollow structures. As a result, the tap density can be increased about 30 %. The as‐prepared bowl‐like SnO2@carbon hollow particles with conformal carbon support exhibit excellent lithium storage properties in terms of high capacity, stable cyclability and excellent rate capability.  相似文献   

12.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   

13.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1 642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   

14.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

15.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量.通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导.此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+...  相似文献   

16.
Rational design and synthesis of advanced anode materials are extremely important for high‐performance lithium‐ion and sodium‐ion batteries. Herein, a simple one‐step hydrothermal method is developed for fabrication of N‐C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N‐doped carbon layer. Owing to its unique structural features, the N‐C@MoS2 microspheres exhibit greatly enhanced lithium‐ and sodium‐storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane‐assisted hydrothermal method could be useful for the construction of many other high‐capacity metal oxide/sulfide composite electrode materials for energy storage.  相似文献   

17.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three‐layered Cu2S@carbon@MoS2 as anode materials for sodium‐ion batteries is reported. Through a facile multistep template‐engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen‐doped carbon‐coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three‐layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

18.
Nanostructured NiCo2O4 is directly grown on the surface of three‐dimensional graphene‐coated nickel foam (3D‐GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder‐free lithium‐ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder‐free electrode structures. The flower‐type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g?1 at 200 mA g?1) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet‐type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well‐preserved connection between the active materials and the current collector, a short lithium‐ion diffusion path, and fast electrolyte transfer in the binder‐free NiCo2O4‐coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder‐free NiCo2O4/3D‐GNF hybrid a potential material for commercial applications.  相似文献   

19.
In this report, sandwiched Ni2P nanoparticles encapsulated by graphene sheets are first synthesized by directly encapsulating functional units in graphene sheets instead of fabricating separate graphene sheets and then immobilizing the functional components onto the generated surfaces. In this strategy, we use low‐cost, sustainable and environmentally friendly glucose as a carbon source and NiNH4PO4 ? H2O nanosheets as sacrificial templates. This unique structure obtained here cannot only prevent the nanoparticles from aggregation or loss but also enhance the electronic conductivity compared to the independent nanoparticles. Furthermore, the novel sandwich‐like Ni2P/C can be applied in plenty of fields, especially in electrical energy storage. In this paper, a series of electrochemical tests of the sandwich‐like Ni2P/C are carried out, which demonstrate the excellent cyclic stability and rate capacity for lithium‐ion batteries.  相似文献   

20.
High reversible lithium storage capacity is obtained from novel SnO2/ZnWO4 core–shell nanorods. At C/20 (20 h per half cycle) rate, the reversible capacity of SnO2/ZnWO4 core–shell nanorods is as high as 1000 mAh g?1, much higher than that of pure ZnWO4, SnO2, or the traditional theoretical result of the simple mixture. Such performance can be attributed to the synergistic effect between the nanostructured SnO2 and ZnWO4. The distinct electrochemical activity of ZnWO4 nanorods probably activates the irreversible capacity of the SnO2 nanoparticles. These results indicate that high‐performance lithium ion batteries can be realized by introducing the synergistic effect of one‐dimensional core–shell nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号