首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This communication reports the design of a novel aptamer conjugated gold nanocage decorated SWCNTs hybrid nanomaterial for targeted imaging and selective photothermal destruction of the prostate cancer cells.  相似文献   

2.
A fluorophore–phenylamine derivative ( L ) has been coupled with silver nanocrystals (NCs) to construct an L– Ag nanohybrid. Owing to synergic effects of the L and Ag components, the exciton–plasmon interactions between L and Ag increase the strength of the donor–acceptor interaction within the nanohybrid, a fact that results in an energy‐transfer process and further brings about a dramatic redshift of single‐photon absorption and fluorescence, and a decreased fluorescence FL lifetime. The coupling effect also leads to enhancement of a series of nonlinear optical properties, including two‐photon‐excited fluorescence (TPEF), two‐photon‐absorption (TPA) cross section (δ), two‐photon‐absorption coefficient (β), nonlinear refractive index (γ), and third order nonlinear optical susceptibility (χ(3)). The enhanced two‐photon fluorescence of the nanohybrid is proven to be potentially useful for two‐photon microscopy of live cells, such as HepG2. Moreover, cytotoxicity tests show that the low‐micromolar concentrations of the nanohybrid do not cause significant reduction in cell viability over a period of at least 24 h and should be safe for further biological studies.  相似文献   

3.
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐coalt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers.  相似文献   

4.
We report a facile approach to fabricating low‐generation poly(amidoamine) (PAMAM) dendrimer‐stabilized gold nanoparticles (Au DSNPs) functionalized with folic acid (FA) for in vitro and in vivo targeted computed tomography (CT) imaging of cancer cells. In this study, amine‐terminated generation 2 PAMAM dendrimers were employed as stabilizers to form Au DSNPs without additional reducing agents. The formed Au DSNPs with an Au core size of 5.5 nm were covalently modified with the targeting ligand FA, followed by acetylation of the remaining dendrimer terminal amines to endow the particles with targeting specificity and improved biocompatibility. Our characterization data show that the formed FA‐modified Au DSNPs are stable at different pH values (5—8) and temperatures (4–50 °C), as well as in different aqueous media. MTT assay data along with cell morphology observations reveal that the FA‐modified Au DSNPs are noncytotoxic in the particle concentration range of 0–3000 nM . X‐ray attenuation coefficient measurements show that the CT value of FA‐modified Au DSNPs is much higher than that of Omnipaque (a clinically used CT contrast agent) at the same concentration of the radiodense elements (Au or iodine). Importantly, the FA‐modified Au DSNPs are able to specifically target a model cancer cell line (KB cells, a human epithelial carcinoma cell line) over‐expressing FA receptors and they enable targeted CT imaging of the cancer cells in vitro and the xenografted tumor model in vivo after intravenous administration of the particles. With the simple synthesis approach, easy modification, good cytocompatibility, and high X‐ray attenuation coefficient, the FA‐modified low‐generation Au DSNPs could be used as promising contrast agents for targeted CT imaging of different tumors over‐expressing FA receptors.  相似文献   

5.
Gold nanoparticles (AuNPs) are regarded as promising building blocks in functional nanomaterials for sensing, drug delivery and catalysis. One remarkable property of these particles is the localized surface plasmon resonance (LSPR), which gives rise to augmented optical properties through local field enhancement. LSPR also influences the nonlinear optical properties of metal NPs (MNPs) making them potentially interesting candidates for fast, high resolution nonlinear optical imaging. In this work we characterize and discuss the wavelength dependence of the hyper-Rayleigh scattering (HRS) behavior of spherical gold nanoparticles (GNP) and gold nanorods (GNR) in solution, from 850 nm up to 1300 nm, covering the near-infrared (NIR) window relevant for deep tissue imaging. The high-resolution spectral data allows discriminating between HRS and two photon photoluminescence contributions. Upon particle aggregation, we measured very large enhancements (ca. 104) of the HRS intensity in the NIR, which is explained by considering aggregation-induced plasmon coupling effects and local field enhancement. These results indicate that purposely designed coupled nanostructures could prove advantageous for nonlinear optical imaging and biosensing applications.  相似文献   

6.
Interpenetration in metal–organic frameworks (MOFs) is an intriguing phenomenon with significant impacts on their properties, and functional applications. Herein, we show that a 7‐fold interpenetrated MOF ( 1 ) is transformed into an 8‐fold interpenetrated MOF by the loss of DMF in a single‐crystal‐to‐single‐crystal manner. This is accompanied by a giant enhancement of the second harmonic generation (SHG ca. 125 times) and two‐photon photoluminescence (ca. 14 times). The strengthened π–π interaction between the individual diamondoid networks and intensified oscillator strength of the molecules aid the augment of dipole moments and boost the nonlinear optical conversion efficiency. Large positive and negative thermal expansions of 1 occur at 30–150 °C before the loss of DMF. These results offer an avenue to manipulate the NLO properties of MOFs using interpenetration and provide access to tunable single‐crystal NLO devices.  相似文献   

7.
Gallium selenide, an important second‐order nonlinear semiconductor, has received much scientific interest. However, the nonlinear properties in its two‐dimensional (2D) form are still unknown. A strong second harmonic generation (SHG) in bilayer and multilayer GaSe sheets is reported. This is also the first observation of SHG on 2D GaSe thin layers. The SHG of multilayer GaSe above five layers shows a quadratic dependence on the thickness; while that of a sheet thinner than five layers shows a cubic dependence. The discrepancy between the two SHG responses is attributed to the weakened stability of non‐centrosymmetric GaSe in the atomically thin flakes where a layer–layer stacking order tends to favor centrosymmetric modification. Importantly, two‐photon excited fluorescence has also been observed in the GaSe sheets. Our free‐energy calculations based on first‐principles methods support the observed nonlinear optical phenomena of the atomically thin layers.  相似文献   

8.
A glucopyranose functionalized star‐shaped oligomer, N‐tris{4,4′,4′′‐[(1E)‐2‐(2‐{(E)‐2‐[4‐(benzo[d]thiazol‐2‐yl)phenyl]vinyl}‐9,9‐bis(6‐2‐amido‐2‐deoxy‐1‐thio‐β‐D ‐glucopyranose‐hexyl)‐9H‐fluoren‐7‐yl)vinyl]phenyl}phenylamine (TVFVBN‐S‐NH2), is synthesized for two‐photon fluorescence imaging. In water, TVFVBN‐S‐NH2 self‐assembles into nanoparticles with an average diameter of ~49 nm and shows a fluorescence quantum yield of 0.21. Two‐photon fluorescence measurements reveal that TVFVBN‐S‐NH2 has a two‐photon absorption cross‐section of ~1100 GM at 780 nm in water. The active amine group on the glucopyranose moiety allows further functionalization of TVFVBN‐S‐NH2 with folic acid to yield TVFVBN‐S‐NH2FA with similar optical and physical properties as those for TVFVBN‐S‐NH2. Cellular imaging studies reveal that TVFVBN‐S‐NH2FA has increased uptake by MCF‐7 cells relative to that for TVFVBN‐S‐NH2, due to specific interactions between folic acid and folate receptors on the MCF‐7 cell membrane. This study demonstrates the effectiveness of glycosylation as a molecular engineering strategy to yield water‐soluble materials with a large two‐photon absorption (TPA) cross‐section for targeted cancer‐cell imaging.  相似文献   

9.
We have investigated linear and nonlinear optical properties of surface immobilized gold nanospheres (SIGNs) above a gold surface with a gap distance of a few nanometers. The nanogap was supported by amine or merocyanine terminated self-assembled monolayers (SAMs) of alkanethiolates. A large second-harmonic generation (SHG) was observed from the SIGN systems at localized surface plasmon resonance condition. The maximum enhancement factor of SHG intensity was found to be 3 x 10(5) for the SIGN system of nanospheres 100 nm in diameter with a gap distance of 0.8 nm. The corresponding susceptibility was estimated to be chi((2))=750 pmV (1.8 x 10(-6) esu). In the SIGN system supported with the merocyanine terminated SAMs, the SHG response was also resonant to the merocyanine in the nanogap. It was found that the SHG response of the SIGN systems is strongly frequency dependent. This leads us to conclude that the large chi((2)) is caused by enhanced electric fields at the localized surface plasmon resonance condition and is not due to an increase of the surface susceptibility following from the presence of the gold nanospheres. The observed SHG was consistent with the theoretical calculations involving Fresnel correction factors, based on the quasistatic approximation.  相似文献   

10.
Quantum dots (QDs) hold great promise for the molecular imaging of cancer because of their superior optical properties. Although cell‐surface biomarkers can be readily imaged with QDs, non‐invasive live‐cell imaging of critical intracellular cancer markers with QDs is a great challenge because of the difficulties in the automatic delivery of QD probes to the cytosol and the ambiguity of intracellular targeting signals. Herein, we report a new type of DNA‐templated heterobivalent QD nanoprobes with the ability to target and image two spatially isolated cancer markers (nucleolin and mRNA) present on the cell surface and in the cell cytosol. Bypassing endolysosomal sequestration, this type of QD nanoprobes undergo macropinocytosis following the nucleolin targeting and then translocate to the cytosol for mRNA targeting. Fluorescence resonance energy transfer (FRET) based confocal microscopy enables unambiguous signal deconvolution of mRNA‐targeted QD nanoprobes inside cancer cells.  相似文献   

11.
We have previously shown that plasmonic nanoparticles conjugated with nuclear‐targeting and cytoplasm‐targeting peptides (NLS and RGD, respectively) are capable of altering the cell cycle of human oral squamous carcinoma cells (HSC‐3). In the present work, we show that this regulation of the cell cycle can be exploited to enhance the efficacy of a common chemotherapeutic agent, 5‐Fluorouracil, by pretreating cells with gold nanoparticles. Utilizing flow cytometry cell cycle analysis, we were able to quantify the 5‐Fluorouracil efficacy as an accumulation of cells in the S phase with a depletion of cells in the G2/M phase. Two gold nanoparticle sizes were tested in this work; 30 nm with a surface plasmon resonance at 530 nm and 15 nm with a surface plasmon resonance at 520 nm. The 30 nm nuclear‐targeted gold nanoparticles (NLS‐AuNPs) showed the greatest 5‐Fluorouracil efficacy enhancement when 5‐Fluorouracil treatment (500 μm , 48 h) is preceded by a 24‐h treatment with nanoparticles. In conclusion, we show that nuclear‐targeted 30 nm gold nanoparticles enhance 5‐Fluorouracil drug efficacy in HSC‐3 cells via regulation of the cell cycle, a chemosensitization technique that could potentially be expanded to different cell lines and different chemotherapies.  相似文献   

12.
We report the optical second harmonic (SH) response from gold core-silver shell nanoparticles supported at a liquid-liquid interface in the spectral region where the second harmonic generation (SHG) frequency is resonant with the surface plasmon (SP) resonance excitation of the nanoparticles. We compare these results with that obtained by classical linear optical absorption spectroscopy and show that the nonlinear optical response is dominated by the SP resonance enhancement with negligible contributions from the interband transitions. As a result, the SH spectrum exhibits two clear SP resonance bands attributed to the two SP resonances of the composite nanostructure formed by the gold core-silver shell nanoparticles. Absolute values of the hyperpolarizabilities are measured by hyper Rayleigh scattering (HRS) and compared that of pure gold nanoparticles. The hyperpolarizability measured at a harmonic energy of 3.0 eV, enhanced through excitation of the high energy SP resonance of the nanoparticle, increases with the silver content whereas the hyperpolarizability measured at a harmonic energy of 2.4 eV, enhanced through the excitation of the low energy SP resonance of the nanoparticle, decreases because of the shift of this resonance away from the harmonic frequency. The hyperpolarizability determined by HRS and the square root of the SHG intensities, scaling with the nanoparticle hyperpolarizability, have similar trends with respect to the silver content indicative of closely related adsorption properties yielding similar surface concentrations at the liquid-liquid interface.  相似文献   

13.
Gold nanorods (NRs) have plasmon‐resonant absorption and scattering in the near‐infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two‐photon luminescence due to plasmon‐enhanced two‐photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography or photoacoustic tomography. Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell‐specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser‐induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca2+ influx and the depolymerization of the intracellular actin network. The combination of plasmon‐resonant optical properties, intense local photothermal effects and robust surface chemistry render gold NRs as promising theragnostic agents.  相似文献   

14.
A two‐stage mediated near‐infrared (NIR) emissive supramolecular assembly for lysosome‐targeted cell imaging is presented. 4,4′‐Anthracene‐9,10‐diylbis(ethene‐2,1‐diyl))bis(1‐ethylpyridin‐1‐ium) bromide (ENDT) was synthesized as an organic dye with weak fluorescence emission at 625 nm. When ENDT complexes with cucurbit[8]uril (CB[8]), this binary supramolecular complex assembles into nanorods with a near‐infrared fluorescence emission (655 nm) and fluorescence enhancement as the first stage. Such supramolecular complexes interact with lower‐rim dodecyl‐modified sulfonatocalix[4]arene (SC4AD) to form nanoparticles for further fluorescence enhancement as the second stage. Furthermore, based on a co‐staining experiment with LysoTracker Blue, such nanoparticles can be applied in NIR lysosome‐targeted cell imaging.  相似文献   

15.
本文理论上研究了两个系列的噻吩基卟啉衍生物,这种衍生物在可见光区具有大的双光子吸收截面。用密度泛函理论和ZINDO-SOS方法,计算了分子的几何构型、电子结构,单光子和双光子吸收性质。结果显示噻吩单元的数目影响分子的单光子和双光子吸收性质。具有两个或三个噻吩基团的噻吩基卟啉衍生物在较大范围内具有可用于实际应用中的双光子吸收响应,这一性质有利于这类分子在光限幅中的应用。插入乙炔基有利于扩大共轭范围,增加分子的双光子吸收截面。同时,乙炔基团的加入导致了单光子和双光子波长的红移。从高透明性和相对大的非线性光学响应考虑,噻吩基卟啉衍生物是一类有应用前景的双光子吸收材料。  相似文献   

16.
Controlled generation of cytotoxic agents with near‐IR light is a current focus of photoactivated cancer therapy, including that involving cytotoxic platinum species. A heptamethine cyanine scaffolded PtII complex, IR797‐Platin exhibits unprecedented Pt?O bond scission and enhancement in DNA platination in near‐IR light. This complex also displayed significant singlet oxygen quantum yield thereby qualifying as a near‐IR photodynamic therapeutic agent. The complex showed 30–60 fold enhancement of cytotoxicity in near‐IR light in various cancer cell lines. The cellular imaging properties were also leveraged to observe its significant co‐localization in cytoplasmic organelles. This is the first demonstration of a near‐IR light‐initiated therapy involving the cytotoxic effects of both active cisplatin and singlet oxygen.  相似文献   

17.
Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed.  相似文献   

18.
制备了粒径均一的纳米金颗粒, 再对其表面进行叶酸修饰, 制得具有靶向性的纳米金探针. 利用激光扫描共聚焦显微镜(LSCM), 对靶向性纳米金的细胞特异性散射成像进行研究. 实验结果表明, 人宫颈癌细胞(Hela)对纳米金-叶酸的摄取作用强于对纳米金的摄取, 但随着时间的延长, 两者的差别逐渐减小. 表明在适当的时间内纳米金-叶酸探针对宫颈癌细胞具有良好的靶向性.  相似文献   

19.
以金纳米笼(AuNC)为核, 巯基化改性的透明质酸(LC-HA)为壳, 盐酸阿霉素(DOX)为药物模型, 通过简单的一锅法制备了核壳结构载药纳米粒子DOX@AuNC@HA(DAH). 金纳米笼为药物装载提供容器且赋予载体光热性能, 改性的透明质酸对金纳米笼进行包封并提供pH/酶响应及靶向介导功能. 对DAH的结构进行了表征, 并进行了载药、 控释性能以及细胞摄取和细胞毒性的研究. 结果表明, 核壳结构纳米微粒DAH具有较高的载药能力, 在激光源的照射下具有较好的循环稳定性和较高的光热转换率. 在pH=7.4的磷酸盐缓冲液中, DAH具有较高的稳定性, 20 h的药物泄露率低于20%; 而在酸性环境、 透明质酸酶(HAase)及光热作用下, DAH均能较快地释放出装载的药物, 展现出较好的刺激响应性. 此外, DAH能够更多地被肿瘤细胞摄取, 表现出一定的靶向性; 当化疗与光热疗法共同作用时, 肿瘤细胞的活性大大减弱, 展现出了联合疗法的优势及潜力.  相似文献   

20.
Fluorescent materials exhibiting two‐photon induction (TPI) are used for nonlinear optics, bioimaging, and phototherapy. Polymerizations of molecular chromophores to form π‐conjugated structures were hindered by the lack of long‐range ordering in the structure and strong π–π stacking between the chromophores. Reported here is the rational design of a benzothiadiazole‐based covalent organic framework (COF) for promoting TPI and obtaining efficient two‐photon induced fluorescence emissions. Characterization and spectroscopic data revealed that the enhancement in TPI performance is attributed to the donor‐π‐acceptor‐π‐donor configuration and regular intervals of the chromophores, the large π‐conjugation domain, and the long‐range order of COF crystals. The crystalline structure of TPI‐COF attenuates the π–π stacking interactions between the layers, and overcomes aggregation‐caused emission quenching of the chromophores for improving near‐infrared two‐photon induced fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号