首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
《先进技术聚合物》2018,29(7):1966-1973
Degradable biopolymers with functional groups play a crucial role in the biomedical field. In this case, the influences of temperature and pH values on the degradation performance of poly (γ‐glutamic acid) (γ‐PGA) were fully explored by gel permeation chromatography. Further, γ‐PGA‐Ca was prepared by using calcium chloride to react with the low molecular weight γ‐PGA and characterized by Fourier transform infrared, differential scanning calorimetry test, gel permeation chromatography, atomic absorption spectrophotometric, Ca2+ release in vivo, and cytotoxicity experiments. Furthermore, Caco‐2 cell model was constructed to study the mechanism of γ‐PGA‐Ca intestinal absorption. Results indicated that low pH value and high temperature are the suitable conditions for the degradation of γ‐PGA. It also suggested that γ‐PGA‐Ca can be used as calcium supplements due to its high rate of absorption.  相似文献   

2.
The thermosensitivity of biodegradable and non‐toxic amphiphilic polymer derived from a naturally occurring polypeptide and a derivative of amino acid was first reported. The amphiphilic polymer consisted of poly(γ‐glutamic acid) (γ‐PGA) as a hydrophilic backbone, and L ‐phenylalanine ethyl ester (L ‐PAE) as a hydrophobic branch. Poly(γ‐glutamic acid)‐graft‐L ‐phenylalanine (γ‐PGA‐graft‐L ‐PAE) with grafting degrees of 7–49% were prepared by varying the content of a water‐soluble carbodiimide (WSC). γ‐PGA‐graft‐L ‐PAE with a grafting degree of 49% exhibited thermoresponsive phase transition behavior in an aqueous solution at around 80°C. The copolymers with grafting degrees in the range of 30–49% showed thermoresponsive properties in NaCl solution. A clouding temperature (Tcloud) could be adjusted by changing the polymer concentration and/or NaCl concentration. The thermoresponsive behavior was reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Sodium alginate (Alg) hydrogel films were crosslinked with either calcium poly(γ‐glutamate) (Ca‐PGA) or CaCl2. The hydrophilicity of the resulting hydrogel films was evaluated through swelling tests, water retention capacity tests, and water vapor permeation tests. The swelling ratio, water retention capacity, and the water vapor transmission rate (WVTR) of Alg/Ca‐PGA were higher than those of Ca‐Alg. The swelling ratio of Alg/Ca‐PGA was 651 and 190% at pH 7.4 and pH 1.2, respectively. The tensile strength of Alg/Ca‐PGA hydrogel was lower than that of Ca‐Alg. The results of hemocompatibility test showed that Alg/Ca‐PGA caused shorter activated partial thromboplastin time (APTT) than Ca‐Alg. Both Ca‐Alg and Alg/Ca‐PGA exhibited almost no adsorption of human serum albumin (HSA), whereas the adsorption of human plasma fibrinogen (HPF) of Ca‐Alg was 10 times of that of Alg/Ca‐PGA. In addition, Alg/Ca‐PGA exhibited platelet adhesion higher than Ca‐Alg. Furthermore, both Alg/Ca‐PGA and Ca‐Alg exhibited no cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, the first generation of poly(propyleneimine) dendrimers were functionalized with alkoxysilane terminal groups and subjected to one of two different sol–gel process that followed two different catalytic pathways, that is base‐ or acid‐catalyzed pathways. Thus, two series of new organic–inorganic hybrid materials were obtained in the form of monolithic pieces with differences in terms of both morphology and silanol content, which originated from the different sol–gel pathway that was followed. Moreover, calcium ions were added into the hybrid composition to promote in vitro bioactivity and phosphorous sources were used during the sol–gel step to obtain an earlier bioactive response. Characterization of these organic–inorganic hybrid materials was performed by means of thermogravimetric and elemental analyses, Fourier transform infrared spectroscopy (FTIR), solid state 13C, 29Si and 31P magic‐angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, N2‐adsorption isotherms, mercury‐intrusion porosimetry, and ζ‐potential measurements. The in vitro bioactivity of the dendritic hybrid networks was evaluated by soaking the materials in simulated body fluid and the results were explained in terms of the composition of the hybrids and the sol–gel route that was followed to prepare them.  相似文献   

5.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

6.
Biodegradable multi‐l ‐arginyl‐poly‐l ‐aspartate (MAPA), more commonly cyanophycin, prepared with recombinant Escherichia coli contains a polyaspartate backbone with lysine and arginine as side chains. Two assemblies of polyelectrolyte multilayers (PEMs) are fabricated at three different concentration ratios of insoluble MAPA (iMAPA) with hyaluronic acid (iMAPA/HA) and with γ‐polyglutamic acid (iMAPA/γ‐PGA), respectively, utilizing a layer‐by‐layer approach. Both films with iMAPA and its counterpart, HA or γ‐PGA, as the terminal layer are prepared to assess the effect on film roughness, cell growth, and cell migration. iMAPA incorporation is higher for a higher concentration of the anionic polymer due to better charge interaction. The iMAPA/HA films when compared to iMAPA/γ‐PGA multilayers show least roughness. The growth rates of L929 fibroblast cells on the PEMs are similar to those on glass substrate, with no supplementary effect of the terminal layer. However, the migration rates of L929 cells increase for all PEMs. γ‐PGA incorporated films impart 50% enhancement to the cell migration after 12 h of culture as compared to the untreated glass, and the smooth films containing HA display a maximum 82% improvement. The results present the use of iMAPA to construct a new layer‐by‐layer system of polyelectrolyte biopolymers with a potential application in wound dressing.  相似文献   

7.
This study investigated the dependence of the anticorrosion performance of a poly(γ‐glycidoxypropyltrimethoxysilane) (poly(γ‐GPTMS)) sol‐gel coating on AA2024‐T3 aluminum alloy surface state. Two different AA2024‐T3 surface pretreatment procedures were tested: a degreasing with acetone and a chemical multistep etching process (industrial chemical etching pretreatment). Poly(γ‐GPTMS) coatings were deposited onto both pretreated surfaces using the dip‐coating technique. Surfaces were characterized principally by scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared attenuated total reflectance, contact angles, and roughness measurements. Moreover, for the coated AA2024‐T3 surfaces, a pull‐off test was used to evaluate the poly(γ‐GPTMS) adhesion to the pretreated surface. Bare surface properties depended on the applied pretreatment. The chemically etched surface was the roughest and the most concentrated in hydroxyl groups. In addition, comparatively to the degreased surface, it has a more hydrophobic character. Poly(γ‐GPTMS) coating revealed an uneven nature and a poor adhesion once it was deposited onto the degreased surface. Coatings anticorrosion performances were evaluated using electrochemical impedance spectroscopy measurements (EIS). Electrochemical impedance spectroscopy data proved that the sol‐gel coating applied onto the chemically etched surface had better anticorrosion performance.  相似文献   

8.
A new inorganic–organic hybrid based on an aspartate functionalized polyoxomolybdate, [pentaaquacobalt(II)]‐μ‐aspartate‐[γ‐octamolybdate]‐μ‐aspartate‐[pentaaquacobalt(II)] tetrahydrate, [Co2(C4H6NO4)2(γ‐Mo8O26)(H2O)10]·4H2O ( 1 ), has been synthesized under hydrothermal conditions from the reaction of an Evans–Showell‐type polyoxometalate, (NH4)6[Co2Mo10H4O38], and l ‐aspartic acid. The complex exhibits a supramolecular three‐dimensional framework structure in the crystal lattice. Compound 1 was structurally characterized by elemental analyses, IR and UV–Vis (diffuse reflectance) spectroscopy and single‐crystal X‐ray diffraction. In this compound, aspartic acid acts as a bridge between the two Co atoms and the Mo centres, with the –CH2COOH side chain directly linked to the Mo centre in γ‐[Mo8O26]4? and the α‐carboxylate side chain bound to the Co centre. Commonly, the binding of transition‐metal complexes to POMs involves coordination of the metal to a terminal O atom of the POM so that 1 , with a bridging ligand between Mo and Co atoms, belongs to a separate class of hybrid materials. While the starting materials are both chiral and one might expect them to form a chiral hybrid, the decomposition of the chiral Evans–Showell‐type POM and its conversion to the centrosymmetric γ‐octamolybdate POM, plus the presence of two aspartate ligands centrosymmetrically placed on either side of the POM, leads to the formation of an achiral hybrid. We have studied energetically by means of density functional theory (DFT) calculations and using the Bader's `atoms‐in‐molecules' analysis the electrostatically enhanced hydrogen bonds (EEHBs) observed in the solid state of 1 , which are crucial for the formation of one‐dimensional supramolecular assemblies.  相似文献   

9.
A facile and green approach is reported to construct pixantrone/poly(γ‐glutamic acid) nanoparticles (PIX/γ‐PGA NPs) as an oral drug delivery system through the complex self‐assembly of polyelectrolyte γ‐PGA and the anticancer drug pixantrone dimaleate (PDM). The complex self‐assembly behavior is investigated in detail. The results demonstrate that PDM can interact with γ‐PGA to conveniently form NPs and the size of NPs can be controlled by adjusting the solution volume ratio of PDM to γ‐PGA. These NPs illustrate their pH‐dependent release behavior, efficient cellular uptake and enhanced drug efficacy through an in vitro release study, flow cytometry, CLSM analysis and the MTT assay. In summary, PIX/γ‐PGA NPs may serve as a promising oral drug delivery system for cancer therapy.

  相似文献   


10.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

11.
In this work we present experimental results about the formation, properties and structure of sol — gel silica based biocomposite containing Calcium alginate as an organic compound. Two different types of silicon precursors have been used in the synthesis: tetramethylortosilicate (TMOS) and ethyltrimethoxysilane (ETMS). The samples have been prepared at room temperature. The hybrids have been synthesized by replacing different quantitis of the inorganic precursor with alginate. The structure of the obtained hybrid materials has been studied by XRD, IR Spectroscopy, EDS, BET and AFM. The results proved that all samples are amorphous possessing a surface area from 70 to 290 m2/g. It has also been established by FT IR spectra that the hybrids containing TMOS display Van der Walls and Hydrogen bonding or electrostatic interactions between the organic and inorganic components. Strong chemical bonds between the inorganic and organic components in the samples with ETMS are present. A self-organized nanostructure has been observed by AFM. In the obtained hybrids the nanobuilding blocks average in size at about 8–14 nm for the particles.  相似文献   

12.
13.
To compare the properties of hyperbranched polymers with linear oligomers for preparing organic‐inorganic hybrids, hyperbranched aliphatic polyester (BoltornTM H20) and linear polyester hexa‐acrylate (EB830) were selected as organic components for preparing UV‐curable transparent hybrid materials using 3‐(trimethoxysilyl) propylmethacrylate as a coupling agent via a sol‐gel process. The prehydrolyzed product of tetraethoxysilane was used as an inorganic component. The effects of inorganic content on the morphologies, thermal behaviors, photopolymerizaiton kinetics and mechanical properties of the hybrids were investigated. The results show that for hyperbranched polyester‐based hybrids, the organic phase shows much better compatibility with inorganic phase even at high inorganic component content due to its special spheral shape and plenty of functional end groups, compared with linear EB830‐based hybrids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Molecular chirality is ubiquitous in nature. The natural biopolymers, proteins and DNA, preferred a right‐handed helical bias due to the inherent stereochemistry of the monomer building blocks. Here, we are reporting a rare co‐existence of left‐ and right‐handed helical conformations and helix‐terminating property at the C‐terminus within a single molecule of α,γ‐hybrid peptide foldamers composed of achiral Aib (α‐aminoisobutyric acid) and 3,3‐dimethyl‐substituted γ‐amino acid (Adb; 4‐amino‐3,3‐dimethylbutanoic acid). At the molecular level, the left‐ and right‐handed helical screw sense of α,γ‐hybrid peptides are representing a macroscopic tendril perversion. The pronounced helix‐terminating behaviour of C‐terminal Adb residues was further explored to design helix–Schellman loop mimetics and to study their conformations in solution and single crystals. The stereochemical constraints of dialkyl substitutions on γ‐amino acids showed a marked impact on the folding behaviour of α,γ‐hybrid peptides.  相似文献   

15.
The role of polydimethylsiloxane (PDMS) as a compatibilizer of polyimide/silica hybrid composites was investigated. Introduction of PDMS into a polyimide matrix retards the phase separation of hybrid composites and also prevents the formation of high‐molecular‐weight silicate. PDMS interacts with silica because of the similarity of its structure with the sol‐gel glass matrix of the silica precursor, indicating that poly(imide siloxane)/silica might be a good candidate material for organic/inorganic hybrid composites.  相似文献   

16.
Hybrid organic–inorganic materials derived from 3‐glycidoxypropyltrimethoxylsilane were prepared via two different synthetic routes: (1) the HCl‐catalyzed sol–gel approach of silane followed by the lithium perchlorate (LiClO4)/HCl‐catalyzed opening of epoxide and (2) the simultaneous gelation of tin/LiClO4‐catalyzed silane/epoxide groups. LiClO4 catalyzed the epoxide polymerization, and its effects on the structures of these hybrid materials were studied by NMR. The structure of the inorganic side was probed by solid‐state 29Si NMR spectroscopy, and the characterizations of the organic side and the chemical processes involved in the different synthetic routes were performed with solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR. The different synthetic routes significantly affected the polymerization behaviors of the organic and inorganic sides in the presence of LiClO4. A larger amount of LiClO4 promoted the opening of epoxide and led to the formation of longer poly(ethylene oxide) chains via the HCl‐catalyzed sol–gel approach, whereas in the case of the tin‐catalyzed approach, the faster polymerization of the inorganic side hindered the growth of the organic network. The addition of LiClO4 was proven to be without crystalline salt present in the hybrid networks by wide‐angle X‐ray powder diffraction. Also, the interactions between the ions and hybrid host, examined with Fourier transform infrared and 7Li proton‐decoupled magic‐angle‐spinning NMR, further demonstrated that extensive ion aggregation existed in these hybrid materials. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 151–161, 2004  相似文献   

17.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

18.
Transparent poly(methyl acrylate‐co‐itaconic anhydride)/SiO2 hybrid materials were prepared from methyl acrylate‐itaconic anhydride copolymer and tetraethoxysilane (TEOS) with the coupling agent (3‐aminopropyl)triethoxysilane (APTES) via a sol–gel process. The covalent bonds between the organic and inorganic phases were introduced by the in situ aminolysis of the itaconic anhydride units with APTES forming a copolymer bearing a triethoxysilyl group. These groups subsequently were hydrolyzed with TEOS and allowed to form a network. These reactions were monitored by Fourier transform infrared analysis. The amount of APTES had a dramatic influence on the gel time and sol fraction. The effect of APTES, the inorganic content, and the nature of the catalyst on the thermal properties and morphology of the hybrid materials were studied by differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and atomic force microscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 321–328, 2000  相似文献   

19.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Organic–inorganic hybrids based on poly(butyleneadipate‐co‐terephthalate)/titanium dioxide (PBAT/TiO2) hybrid membranes were prepared via a sol–gel process. The PBAT/TiO2 hybrid membranes were prepared for various PBAT/TiO2 ratios. The resulting hybrids were characterized with a morphological structure, hydrophilicity, biodegradability, and thermal properties. The results showed that macrovoids underwent a transition into a sponge‐like membrane structure with the addition of TiO2. After sol–gel transition, a strong interaction between the inorganic network and polymeric chains led to an increase in glass transition temperature (Tg), thermal degrading temperature, and hydrophilicity, and hence a higher biodegradability. According to X‐ray diffraction measurements of the crystal structure of the hybrid, the presence of TiO2 did not change the crystal structure of PBAT. TiO2 networks are uniformly dispersed into the PBAT matrix and no aggregation of TiO2 networks in the hybrid membranes was observed through the small angle X‐ray scattering measurements. Thus, the sol–gel process of PBAT and TiO2 can be used to prepare a hybrid with higher application temperature and faster biodegradation rate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号