首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first asymmetric regio‐ and diastereodivergent γ‐allylation of cyclic α,β‐unsaturated aldehydes based on combined organocatalysis and transition‐metal catalysis is disclosed. By combining an aminocatalyst with an iridium catalyst, both diastereomers of branched allylated products can be achieved in moderate to good yields and excellent regio‐ and stereoselectivities. Furthermore, by replacing the iridium catalyst with a palladium catalyst, the linear allylated products are formed in good yields and excellent regio‐ and enantioselectivities. The developed method thus provides selective access to all six isomers of the γ‐allylated product in a divergent fashion by choosing the appropriate combination of organocatalyst, transition‐metal catalyst, and ligand.  相似文献   

2.
Herein, a coupling reaction of enol ethers with silyl ketene imines in the presence of catalytic amounts of InBr3 and Me3SiBr is described. Kinetic studies have revealed that an indium catalyst and Me3SiBr accelerated the coupling process and the regeneration of the catalyst, respectively. Various types of enol ethers and silyl ketene imines are applicable. In addition, a formal synthesis of verapamil was achieved by using this novel coupling reaction.  相似文献   

3.
A new general concept for α,β‐unsaturated acyl ammonium catalysis is reported that uses p‐nitrophenoxide release from an α,β‐unsaturated p‐nitrophenyl ester substrate to facilitate catalyst turnover. This method was used for the enantioselective isothiourea‐catalyzed Michael addition of nitroalkanes to α,β‐unsaturated p‐nitrophenyl esters in generally good yield and with excellent enantioselectivity (27 examples, up to 79 % yield, 99:1 er). Mechanistic studies identified rapid and reversible catalyst acylation by the α,β‐unsaturated p‐nitrophenyl ester, and a recently reported variable‐time normalization kinetic analysis method was used to delineate the complex reaction kinetics.  相似文献   

4.
A series of α,α -dimethoxydihydrofurans have been prepared and subjected to various acidic and neutral hydrolysis conditions in attempts to prepare conjugated enediones in a stereospecific manner. Isomerization of the 3-hexene-2,5-diones and rearrangements of other enediones to β,γ-unsaturated-γ-lactones have been uncovered. Methods of assignment of stereochemical configuration to the enediones are evaluated; reaction with hydrazine hydrate in the absence of acid is proposed as a useful criterion.  相似文献   

5.
Katmusi Kotera 《Tetrahedron》1961,12(4):248-261
Hydrogenation of -anhydrodihydrocaranine (V) or anhydrocaranine (VII) with Adams catalyst in acetic acid or the Hauptmann reduction of -dihydrocaranone (XX) yielded (—)γ-lycorane (XVII). Catalytic reduction of β-anhydrodihydrocaranine (IX) with palladium-carbon in ethanol gave (+)γ-lycorane (XVIII), while with Adams catalyst in acetic acid it afforded (+)δ-lycorane (XIX) along with (—)β-lycorane (III). Reduction of anhydrocaranine in ethanol gave (±)γ-lycorane which was also obtained by hydrogenation of anhydrolycorine (X). Based on these findings, the configurational structures of -, β-, γ- and δ-lycorane were established and the configuration of dihydrolycorine was confirmed.  相似文献   

6.
Dynamic kinetic asymmetric transformations (DyKAT) of racemic β‐bromo‐α‐keto esters by direct aldolization of nitromethane and acetone provide access to fully substituted α‐glycolic acid derivatives bearing a β‐stereocenter. The aldol adducts are obtained in excellent yield with high relative and absolute stereocontrol under mild reaction conditions. Mechanistic studies determined that the reactions proceed through a facile catalyst‐mediated racemization of the β‐bromo‐α‐keto esters under a DyKAT Type I manifold.  相似文献   

7.
A one‐step transformation of γ‐ and δ‐(spiro)lactones into γ,δ‐ and δ,ε‐unsaturated aldehydes with an excess of formic acid in the vapor phase over a supported manganese catalyst is described for the first time. The scope and limitations of this new reaction are shown with different lactones as substrate, and a mechanistic rationale is proposed.  相似文献   

8.
We report a Zn‐ProPhenol catalyzed asymmetric Mannich reaction between butenolides and polyfluorinated alkynyl ketimines to obtain vinylogous products featuring two contiguous tetrasubstituted stereogenic centers. Notably, this is the first successful use of ketimines in the ProPhenol Mannich process, and the reaction offers a new approach for the preparation of pharmaceutically relevant products possessing trifluoromethylated tetrasubstituted alkylamines. The reaction can be performed on large scale with reduced catalyst loading without impacting its efficiency. Moreover, the acetylene moiety can be further elaborated using various methods.  相似文献   

9.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

10.
《中国化学》2018,36(8):716-722
Enantioselective α‐photoalkylation of β‐ketocarbonyls without any external photosensitizer was described in this work. The photoalkylation reactions, enabled solely by a chiral primary amine catalyst, provided convenient constructions of all‐carbon quaternary stereocenters with good activity and high enantioselectivity. Mechanism studies revealed a direct photolytic radical chain process under visible light irradiation.  相似文献   

11.
Although catalytic asymmetric conjugate addition reactions have remarkably advanced over the last two decades, the application of less electrophilic α,β‐unsaturated carboxylic acid derivatives in this useful reaction manifold remains challenging. Herein, we report that α,β‐unsaturated 7‐azaindoline amides act as reactive electrophiles to participate in catalytic diastereo‐ and enantioselective vinylogous conjugate addition of γ‐butyrolactones in the presence of a cooperative catalyst comprising of a soft Lewis acid and a Brønsted base. Reactions mostly reached completion with as little as 1 mol % of catalyst loading to give the desired conjugate adducts in a highly stereoselective manner.  相似文献   

12.
The fast and living ring-opening polymerization of lactones by bimetallic μ-oxoalkoxides in homogeneous organic phase has led to successful block copolymerization. The catalyst is coordinatively associated in organic media; however, interaction with lactones can induce, following their nature, different rearrangements of the catalytic aggregates, depending on the nature of these lactones. Consequently, ε-caprolactone and β-propiolactone block copolymers are quantitatively obtained only in the presence of a completely dissociated catalyst.  相似文献   

13.
The reactivity of the enamino compounds 4-amino-3-phenylamino(thio)carbonyl-3-penten-2-one 1 and 2 and ethyl 3-amino-2-phenylamino(thio)carbonyl-2-butyrate 7 and 8 was studied using the reaction with hydrazine hydrate and hydrazine hydrochloride to evaluate the 1,3 electrophilic center of the compounds by the formation of the pyrazole rings. The pyrazoles 3, 4, 5, 9, 11 and 13 were obtained depending on the reaction conditions employed.  相似文献   

14.
It was found that structurally isomeric polymers were formed by the ring-opening polymerization of β-(2-acetoxy ethyl)-β-propiolactone with (EtAlO)n and Et(ZnO)2ZnEt catalysts; that is, the Al catalyst catalyzed normal polymerization which led to poly-β-ester and the Zn catalyst formed isomerized poly-β-ester as the main product. The polymer structure was determined by nuclear magnetic resonance (NMR), T1-value, thermal decomposition product, and (Tg). The NMR studies for the monomer–catalyst systems indicated that the Al catalyst interacted predominately with the lactone group, whereas the Zn catalyst interacted with the side-chain ester group. These site-selective interactions could be related to the difference in the stereoregulation by the two catalysts during the poly(β-ester)-forming polymerization process.  相似文献   

15.
A new heterogeneous catalyst, lanthanum immobilized on chitosan, was synthesized and used for the aza‐Michael reaction of β‐enaminone under microwave irradiation. The characteristic structural features of the catalyst were determined using Fourier transform infrared spectroscopy, powder X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, transmission and scanning electron microscopies and inductively coupled plasma atomic emission spectroscopy. The stability of the catalyst was evaluated using thermogravimetric analysis. The use of recyclable catalyst and glycerol as solvent makes this procedure environmentally benign and economically viable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Different aryl substituted acetylenic β-keto cyanides (IAa-o) and β-keto esters (IBa-o) reacted with each of hydrazine hydrate, phenylhydrazine, hydroxylamine hydrochloride and semicarbazide hydrochloride in boiling alcohol to give the same heterocyclic nucleus for each type of ammonia derivative. In certain cases, intermediate acetylenic hydrazides were isolated at room or zero temperatures and cyclized to give the appropriate pyrazol-5-one compounds when healed above their melting points. It is concluded that Michael addition is favoured at elevated temperatures and Claisen addition is favoured at lower temperatures.  相似文献   

17.
A selective iron‐based catalyst system for the hydrogenation of α,β‐unsaturated aldehydes to allylic alcohols is presented. Applying the defined iron–tetraphos complex [FeF(L)][BF4] (L=P(PhPPh2)3) in the presence of trifluoroacetic acid a broad range of aldehydes are reduced in high yields using low catalyst loadings (0.05–1 mol %). Excellent chemoselectivity for the reduction of aldehydes in the presence of other reducible moieties, for example, ketones, olefins, esters, etc. is achieved. Based on the in situ detected hydride species [FeH(H2)(L)]+ a catalytic cycle is proposed that is supported by computational calculations.  相似文献   

18.
The direct enantioselective synthesis of chiral azaheteroaryl ethylamines from vinyl‐substituted N‐heterocycles and anilines is reported. A chiral phosphoric acid (CPA) catalyst promotes dearomatizing aza‐Michael addition to give a prochiral exocyclic aryl enamine, which undergoes asymmetric protonation upon rearomatization. The reaction accommodates a broad range of N‐heterocycles, nucleophiles, and substituents on the prochiral centre, generating the products in high enantioselectivity. DFT studies support a facile nucleophilic addition based on catalyst‐induced LUMO lowering, with site‐selective, rate‐limiting, intramolecular asymmetric proton transfer from the ion‐paired prochiral intermediate.  相似文献   

19.
The organocatalytic enantioselective conjugate addition of secondary β‐ketoamides to α,β‐unsaturated carbonyl compounds is reported. Use of bifunctional Takemoto’s thiourea catalyst allows enantiocontrol of the reaction leading either to simple Michael adducts or spirocyclic aminals in up to 99 % ee. The origin of the enantioselectivity has been rationalised based on combined DFT calculations and kinetic analysis. This study provides a deeper understanding of the reaction mechanism, which involves a predominant role of the secondary amide proton, and clarifies the complex interactions occurring between substrates and the catalyst.  相似文献   

20.
We report a direct catalytic asymmetric Mannich‐type addition of α,β‐unsaturated γ‐butyrolactam to α‐ethoxycarbonyl ketimines promoted by a soft Lewis acid/Brønsted base cooperative catalyst. A thiophosphinoyl group on the nitrogen of ketimines was crucial for both electrophilic activation and α‐addition of γ‐butyrolactams. The obtained aza‐Morita–Baylis–Hillman‐type products bear an α‐amino acid architecture with a tetra‐substituted stereogenic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号