首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theory of the excitation of surface waves by a fast charged particle moving though a thin homogeneous metal film surrounded by a dielectric medium is proposed. The Vavilov-Cherenkov effect is shown to occur for surface waves at the particle velocity one or two orders of magnitude lower than the corresponding velocities in a homogeneous medium.  相似文献   

2.
Omid Zandi  M.S. Abrishamian 《Optik》2011,122(8):746-747
Phase and group velocities of plane waves may have different directions in a linear and homogeneous medium. This difference may lead to interesting situations such as the phase reversal propagation and the orthogonal phase velocity. Although the former has been analyzed in depth and it has found many applications, the latter has been left as a hypothesis. Actually, due to our best knowledge there is no evidence of such media where the phase velocity is orthogonal to the group velocity. In this paper we discuss this situation thoroughly. We show that a plane wave with orthogonal phase velocity cannot possess linear momentum. Moreover, we show that a plane wave without the linear momentum cannot propagate at all, so the orthogonality of the phase velocity does not take place in reality for electromagnetic plane waves.  相似文献   

3.
Phase modulation methods for surface electromagnetic waves propagating at the interface between a homogeneous medium and a one-dimensional photonic crystal have been analyzed numerically and theoretically. Modulation is performed by changing the geometrical parameters of the microrelief on the surface of the photonic crystal. The phase modulation methods under consideration can be used to create optical elements for surface waves, in particular, lenses, prisms, and diffraction gratings. A Bragg grating has been calculated as an example. According to the simulation results, the average coefficient of reflection of a surface wave in the band gap is 0.95.  相似文献   

4.
The phase velocities of plane waves in a pipe filled with a moving acoustic medium are studied for different laws of flow velocity variation along the pipe radius. The wave equation is solved by the discretization method, which breaks the entire pipe volume into individual cylinders under the assumption that, within each of the cylinders, the flow velocity of the medium is constant. This approach makes it possible to reduce the solution to the wave problem to solving Helmholtz equations for individual cylinders. Based on boundary conditions satisfied at the boundaries between neighboring cylinders, a homogeneous system of linear algebraic equations is obtained. From this system, with the use of the scattering matrices, a simple dispersion equation is derived for determining the phase velocities of plane waves. The stability of the numerical solution to the dispersion equation with respect to the number of cylinders is investigated. The phase velocities of quasi-homogeneous and inhomogeneous waves in a pipe are numerically calculated and analyzed for different velocities of a moving medium and different laws of flow velocity variation along the radius. It is shown that the variation that occurs in the phase velocity of a homogeneous plane wave in a pipe due to the motion of the medium is identical to the mean flow velocity for different laws of flow velocity variation along the radius. For inhomogeneous plane waves, the phase velocity increment exceeds the mean flow velocity several times and depends on both the law of wave amplitude distribution along the radius and the law of the flow velocity variation along the radius.  相似文献   

5.
The reflection and transmission theories of waves in pyroelectric and piezoelectric medium are studied in this paper. In general in an infinite homogeneous pyroelectric medium there are four bulk wave modes: quasi-longitudinal, two quasi-transversal and temperature waves. In an infinite homogeneous piezoelectric medium there are three bulk wave modes: quasi-longitudinal and two quasi-transversal waves. In the reflection and transmission problem there are five complex boundary conditions in the pyroelectric medium and four complex boundary conditions for the piezoelectric medium. In this paper, we find that the surface waves will be revealed in the reflection and transmission wave problem. The surface waves have the same wave vector component with the incident waves on the interface plane. The two dimensional reflection problem of waves at the interface between the semi-infinite pyroelectric medium and vacuum is researched in greater detail and a numerical example is given.  相似文献   

6.
The features of the propagation of the surface waves a plasmon-polariton-type at the interface of a dielectric and a nanocomposite material with spherical metal inclusions have been considered. The analysis has been performed taking into account damping of propagating waves, which results in the complexity of dispersion relations, and taking into account the nanoparticle size. The frequency dependences of the group velocity and the depth of surface wave penetration into each medium have been constructed, and the distributions of energy fluxes in the structure have been obtained.  相似文献   

7.
The problem of the stability of capillary waves on the surface of a charged jet of an ideal incompressible electroconducting liquid, which moves with respect to a material dielectric medium, is considered. There is a tangential discontinuity of the velocity field on the interface between the media. Solutions to the problem in two idealized models have been compared, i.e., when the jet has a finite and infinite length. It has been shown that the instability increments and the wave numbers of the most unstable waves, computed in both models, are linearly related, and velocity of motion of the jet acts as a coefficient of proportionality.  相似文献   

8.
The conditions for the existence of surface electromagnetic waves at the planar interface between a homogeneous medium (vacuum) and a thin-layer periodic structure consisting of alternating semiconductor and dielectric layers in an external magnetic field have been investigated. This structure represents an optically biaxial crystal with the effective permittivity tensor components dependent both on the geometric parameters of the structure and on the physical characteristics (magnetic field strength, frequency, and thicknesses of the layers). It has been shown that the propagation of surface electromagnetic waves localized near the interface can occur in the thin-layer biaxial structure within specific ranges of frequencies and external magnetic field strengths.  相似文献   

9.
We have derived and analyzed the dispersion equation for capillary waves with an arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a space-charged cylindrical jet of an ideal incompressible dielectric liquid moving relative to an ideal incompressible dielectric medium. It has been proved that the existence of a tangential jump of the velocity field on the jet surface leads to a periodic Kelvin–Helmholtz- type instability at the interface between the media and plays a destabilizing role. The wavenumber ranges of unstable waves and the instability increments depend on the squared velocity of the relative motion and increase with the velocity. With increasing volume charge density, the critical value of the velocity for the emergence of instability decreases. The reduction of the permittivity of the liquid in the jet or an increase in the permittivity of the medium narrows the regions of instability and leads to an increase in the increments. The wavenumber of the most unstable wave increases in accordance with a power law upon an increase in the volume charge density and velocity of the jet. The variations in the permittivities of the jet and the medium produce opposite effects on the wavenumber of the most unstable wave.  相似文献   

10.
An analysis is made of the experimental investigations of the surface waves existing at the interface between a homogeneous medium and a periodically stratified medium that represents a bounded system of coupled waveguides. It is shown that, in all cases of the observation of surface waves, the bounded system of coupled waveguides has its own spectrum of guided modes and a spectrum of leaky modes that become surface waves of the system. It is also demonstrated that a biosensor can successfully operate when two surface waves serve as leaky modes of a Bragg waveguide in which the periodic system of waveguides is used as a distributed Bragg mirror of this waveguide. A structure supporting surface waves is designed on the basis of ten pairs of Nb2O5-SiO2 layers and implemented experimentally. The surface waves are detected with a K8 glass prism according to the Kretschmann scheme.  相似文献   

11.
Rayleigh type surface wave propagation in the irregular bottom of ocean model which is the interface of homogeneous liquid layer over laying an irregular boundary of homogeneous orthotropic half space under initial stresses has been discussed in this paper. Three different dispersion equations are obtained in the form of simple equation using and not using Perturbation technique. Some special cases have been considered. The effect of irregularity, initial stressed, point source, and depth of liquid layer on the propagation of Rayleigh waves has been analyzed and results of numerical discussion have been presented graphically for three different dispersion equations. Mainly the graphs are shown the variation of phase velocity with wave number in different cases.  相似文献   

12.
宋金宝 《中国物理》2006,15(12):2796-2803
Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618--638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interfacial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618--638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.  相似文献   

13.
The so-called surface plasmon polaritons, i.e., natural waves with a low phase velocity (much lower than the speed of light in a vacuum), exist in silver, gold, and copper nanofilms and nanowires. Electrons that are relatively slow in comparison with those that emit Cherenkov light in a homogeneous medium produce plasmons. The dispersion relations for the corresponding plasmons and the emission angles of plasmons with corresponding frequencies are calculated. It is shown that devices based on detecting Cherenkov light in nanofilms and nanowires can be used to detect low-energy electrons.  相似文献   

14.
We study excitation of acoustic, leaky, and surface waves by a time-harmonic force source located in a homogeneous isotropic elastic half-space contacting a homogeneous gas. The force acts in the normal direction to the interface between the media. We consider the case where the sound velocity in the gas is less than the velocity of the Rayleigh wave propagating along the surface of the solid. An expression is derived for the period-averaged radiation power of the surface Stoneley wave. The total radiation power is calculated for the acoustic wave in the gas and for the leaky pseudo-Rayleigh wave. Variations in the radiation powers of the surface and leaky waves are analyzed as functions of the source depth. If the velocities of compressional and shear waves in the elastic medium significantly exceed the sound velocity in the gas, then the radiation power of the Stoneley wave turns out to be a factor of 106–108 smaller than the radiation powers of other waves. The radiation power of the Stoneley wave decreases monotonically with increasing source depth, and the decrease becomes more pronounced with the increase in the difference between the acoustic impedances of the contacting media. If the shear-wave velocity in the solid is close to the sound velocity in the gas, then the radiation power of the Stoneley wave is comparable with the radiation powers of other waves and exhibits maximum at a certain source depth. For some parameters of the gas and the solid, and for certain source depths, the Stoneley wave carries away more than a half of the total radiation power. It is shown that, for certain relations between the parameters of the media, the radiation power of the Stoneley wave increases due to redistribution of the radiated power from the pseudo-Rayleigh leaky wave. The total power of these waves remains approximatly constant and, with accuracy of the order of 10−3, is equal to the radiation power of the Rayleigh wave at the vacuum-solid interface. It is shown that the acoustic-wave power which can be transmitted to the upper layers of the atmosphere during an earthquake does not exceed 0.01% of the total power radiated at a given frequency. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 7, pp. 577–592, July 2006.  相似文献   

15.
Surface Rayleigh acoustic waves and related elastic properties of quasiperiodic and periodic modulated a-Si:H/a-SiNx:H superlattices have been studied by means of a light-scattering technique. Changes in the phase velocity of the surface Rayleigh acoustic waves as a function of sublayer (a-Si:H) thickness are interpreted using an effective medium model. Despite the existence of structural mismatch in the bond-length and coordination number and of structural disorder in the bond-angle for Si-N and Si-Si, no appreciable discrepancy between the measured results and the theoretical predictions has been found.  相似文献   

16.
Shear horizontal surface acoustic waves do not exist on the flat surface of a semi-infinite elastic medium. It has been shown by several authors recently that such waves can exist on a periodically corrugated, planar surface. We show here on the basis of the Rayleigh method that shear horizontal surface acoustic waves exist on a randomly rough planar surface of an isotropic elastic medium. These waves are only weakly localized to the surface and they have a lifetime that is long due to their roughness-induced scattering into other surface acoustic waves and into bulk waves.  相似文献   

17.
The problem of determining the nonstationary nonlinear velocity field of a viscous incompressible liquid excited by the surface of tangentially vibrating cylinder has been solved numerically in the 2D approximation. It has been shown that the vibrating solid surface generates 2D viscous waves and a displacement flow. The trajectories of propagation of viscous waves and their velocities have been determined. The interaction of a viscous wave with the displacement flow has been analyzed in the first approximation; as a result of this interaction, the velocity field can not only be suppressed with increasing distance from the surface, but also enhanced.  相似文献   

18.
We consider the Sagnac effect in ring interferometers on magnetostatic and surface acoustic waves. It is shown that the Sagnac effect for waves of arbitrary type (including both magnetostatic and surface acoustic waves) propagating in an arbitrary medium cannot be calculated using Galilean transformations but is explained within the framework of the special relativity and is related to the difference between the phase velocities rather than group velocities of counter-propagating waves in the rotating reference frame. We also show that the phase difference of counterpropagating waves due to the Sagnac effect depends on neither the phase velocity of the wave in a medium at rest nor the dispersion of the medium; it depends only on the wave frequency and the angular velocity of interferometer rotation. The minimum angular velocity that can be measured in the ring interferometers using magnetostatic and surface acoustic waves is estimated. N. I. Labachevsky State University, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 4, pp. 373–382, April 1999.  相似文献   

19.
Wave processes in chemically active multicomponent media: liquid — gas bubbles — liquid drops have been studied experimentally. Existence of detonation waves in multicomponent (bubble-drop) media has been proved. Structure of detonation waves in bubble-drop and bubble media is qualitatively identical: detonation waves are solitary waves with pulsation profile the pressure behind which is close in value to the one in unperturbed medium. Propagation velocity of detonation waves in bubble and bubble-drop media drops with the increase in medium gas phase concentration and with the decrease in carrier liquid viscosity. Presence of liquid drops decreases detonation wave velocity compared with bubble medium that does not contain liquid drops. Detonation wave propagation in multicomponent media causes gas bubbles fragmentation as well as fragmentation of individual liquid drops. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 04-03-33106).  相似文献   

20.
Guided waves in a stratified half-space   总被引:1,自引:0,他引:1  
The dispersion and excitation mechanisms and the energy distribution of guided waves in a stratified half-space are studied. All possible guided waves excited by a symmetric point source in two or three-layer medium models and their relation to the medium parameters are analyzed in detail. The excitation and propagation characteristics, as well as the energy distribution along the depth direction, of all modes of the surface waves and trapped waves are numerically investigated and analyzed thoroughly not only in the case when the shear wave velocity increases from up to down layers but also when a low-velocity layer is contained in halfspace, especially when the shear wave velocity decreases from up to down layers. It is found that there exist many guided wave modes in the case where the shear wave velocity of each layer increases from up to down layers. However, there is less than one guided wave mode in the case where the shear wave velocity of each layer decreases from up to down layers. The trapped waves exist and propagate along the low-velocity structure in the stratified half-space. It is also found that the characteristic of a mode is related to the source frequency. It is possible that a surface wave at one value of frequency is like a trapped wave at another value of frequency. Finally, the relation of the characteristics of all guided waves (surface waves and trapped waves) to the parameters of media is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号