首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a general theory of a boson decomposition for both local and non-local interactions in lattice fermion models which allows us to describe fermionic degrees of freedom and collective charge and spin excitations on equal footing. An efficient perturbation theory in the interaction of the fermionic and the bosonic degrees of freedom is constructed in the so-called dual variables in the path-integral formalism. This theory takes into account all local correlations of fermions and collective bosonic modes and interpolates between itinerant and localized regimes of electrons in solids. The zero-order approximation of this theory corresponds to an extended dynamical mean-field theory (EDMFT), a regular way to calculate nonlocal corrections to EDMFT is provided. It is shown that dual ladder summation gives a conserving approximation beyond EDMFT. The method is especially suitable for consideration of collective magnetic and charge excitations and allows to calculate their renormalization with respect to “bare” RPA-like characteristics. General expression for the plasmonic dispersion in correlated media is obtained. As an illustration it is shown that effective superexchange interactions in the half-filled Hubbard model can be derived within the dual-ladder approximation.  相似文献   

2.
We solve the double exchange model on nanoscopic clusters exactly, and specifically consider a six-site benzene-like nanocluster. This simple model is an ideal testbed for studying magnetism in nanoclusters and for validating approximations such as the dynamical mean field theory (DMFT). Non-local correlations arise between neighboring localized spins due to the Hund’s rule coupling, favoring a short-range magnetic order of ferro or antiferromagnetic type. For a geometry with more neighboring sites or a sufficiently strong hybridization between leads and the nanocluster, these non-local correlations are less relevant, and DMFT can be applied reliably.  相似文献   

3.
4.
We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.  相似文献   

5.
We introduce a formalism to compute the neutron magnetic form factor FM(q) within a first-principles density functional theory and dynamical mean field theory. The approach treats spin and orbital interactions on the same footing and reduces to earlier methods in the fully localized or the fully itinerant limit. We test the method on various actinides of current interest NpCoGa5, PuSb and PuCoGa5, and we show that PuCoGa5 is in mixed valent state, which naturally explains the measured magnetic form factor.  相似文献   

6.
We propose an importance truncation scheme for no-core shell model or configuration interaction approaches, which enables converged calculations for nuclei well beyond the p shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for 4He and 16O. Then, we present first converged calculations for the ground state of 40Ca within no-core model spaces including up to 16 PlanckOmega excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.  相似文献   

7.
We say that a quantum spin system is dynamically localized if the time-evolution of local observables satisfies a zero-velocity Lieb-Robinson bound. In terms of this definition we have the following main results: First, for general systems with short range interactions, dynamical localization implies exponential decay of ground state correlations, up to an explicit correction. Second, the dynamical localization of random xy spin chains can be reduced to dynamical localization of an effective one-particle Hamiltonian. In particular, the isotropic xy chain in random exterior magnetic field is dynamically localized.  相似文献   

8.
Using a novel self-consistent implementation of Hedin's perturbation theory, we calculate space- and energy-dependent self-energy for a number of materials. We find it to be local in real space and rapidly convergent on second- to third-nearest neighbors. Corrections beyond are evaluated and shown to be completely localized within a single unit cell. This can be viewed as a fully self-consistent implementation of the dynamical mean field theory for electronic structure calculations of real solids using a perturbative impurity solver.  相似文献   

9.
We propose a fast multi-orbital impurity solver for dynamical mean field theory (DMFT). Our DMFT solver is based on the equations of motion (EOMs) for local Green's functions and is constructed by generalizing from the single-orbital case to the multi-orbital case with the inclusion of the inter-orbital hybridizations and applying a mean field approximation to the inter-orbital Coulomb interactions. The two-orbital Hubbard model is studied using this impurity solver within a large range of parameters. The Mott metal-insulator transition and the quasiparticle peak are well described. A comparison of the EOM method with the quantum Monte Carlo method is made for the two-orbital Hubbard model and good agreement is obtained. The developed method hence holds promise as a fast DMFT impurity solver in studies of strongly correlated systems.  相似文献   

10.
The usual superspace approach to supersymmetric gauge theories suffers from problems with infrared divergences which greatly complicate multiloop calculations. We eliminate these divergences by introducing a non-local gauge-fixing term. In the background field method this term leads to unusual quantum-background interactions. Functional methods are presented for dealing with these interactions. As an example we compute the two-loop Yang-Mills β-function using the background field method in superspace. We also show how a non-local gauge can be used in ordinary, non-supersymmetric Yang-Mills theory.  相似文献   

11.
A first principles non-local pseudopotential method is used to solve the SCF equation for a molecule in the density functional approach. A superlattice technique is applied which allows an expansion of the molecular wavefunction in terms of a mixed basis set consisting of plane waves and localized orbitals. The efficiency of the method is demonstrated for the O2 molecule.  相似文献   

12.
Weak-coupling conserving approximations can be constructed by truncations of the Luttinger-Ward functional and are well known as thermodynamically consistent approaches which respect macroscopic conservation laws as well as certain sum rules at zero temperature. These properties can also be shown for variational approximations that are generated within the framework of the self-energy-functional theory without a truncation of the diagram series. Luttinger's sum rule represents an exception. We analyze the conditions under which the sum rule holds within a non-perturbative conserving approximation. Numerical examples are given for a simple but non-trivial dynamical two-site approximation. The validity of the sum rule for finite Hubbard clusters and the consequences for cluster extensions of the dynamical mean-field theory are discussed.  相似文献   

13.
G C Sett  U Laha  B Talukdar 《Pramana》1987,28(4):325-334
Scattering formalisms which incorporate antisymmetrization of the projectile with respect to identical particles in the target result in a nonsymmetric non-local interaction. Such an interaction constraints the relative wavefunctions to be orthogonal to redundant states forbidden by the Pauli principle. Concentrating on the nonsymmetric non-local kernel of Saito we try to visualize the mechanisms by which a potential can ensure the required orthogonality. We achieve this by replacing the Saito kernel by an effective symmetric non-local potential. The constructed symmetric potential is found to be phase-equivalent only but not off-shell equivalent to the original kernel. This difference in the off-shell behaviour is attributed to the dynamical origin simulating the redundant states. In close analogy with one of our recent works we also derive an energy-momentum dependent equivalent to the local potential. Our solution of the pseudo inverse problem is exact and provides a basis for writing the phase—and quasiphase—equations. We present numerical results in support of this.  相似文献   

14.
15.
We propose a dynamical mean-field approach for calculating the electronic structure of strongly correlated materials from first principles. The scheme combines the GW method with dynamical mean-field theory, which enables one to treat strong interaction effects. It avoids the conceptual problems inherent to conventional "LDA+DMFT," such as Hubbard interaction parameters and double-counting terms. We apply a simplified version of the approach to the electronic structure of nickel and find encouraging results.  相似文献   

16.
We investigate the competition of the Kondo and the RKKY interactions in heavy fermion systems. We solve a periodic Anderson model using extended dynamical mean field theory (EDMFT) with quantum Monte Carlo method. We monitor simultaneously the evolution of the electronic and magnetic properties. As the RKKY coupling increases the heavy fermion quasiparticle unbinds and a local moment forms. At a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the two transitions occur at different points and the disappearance of the magnetism is not described by a local quantum critical point.  相似文献   

17.
We define a new concept of local states in the framework of algebraic quantum field theory (AQFT). Local states are a natural generalization of states and give a clear vision of localization in the context of QFT. In terms of them, we can find a condition from which follows automatically the famous DHR selection criterion in DHR-DR theory. As a result, we can understand the condition as consequences of physically natural state preparations in vacuum backgrounds. Furthermore, a theory of orthogonal decomposition of completely positive (CP) maps is developed. It unifies a theory of orthogonal decomposition of states and order structure theory of CP maps. Using it, localized version of sectors is formulated, which gives sector theory for local states with respect to general reference representations.  相似文献   

18.
The dynamics of fermionic unparticles is developed from first principles. It is shown that any unparticle, whether fermionic or bosonic, can be recast in terms of a canonically quantized field, but with non-local interaction terms. We further develop a possible gauge theory for fermionic unparticles. Computing the consequent contribution of unfermions to the β function of the theory, it is shown that this can be viewed as the sum of two contributions, one fermion-like and the other scalar-like. However, if full conformal invariance is imposed, the latter vanishes identically. We discuss the consequences thereof as well as some general phenomenological issues.  相似文献   

19.
The theory of nonequilibrium potentials or quasipotentials is a physically motivated approach to small random perturbations of dynamical systems, leading to exponential estimates of invariant probabilities and mean first exit times. In the present article we develop the mathematical foundation of this theory for discrete-time systems, following and extending the work of Freidlin and Wentzell, and Kifer. We discuss strategies for calculating and estimating quasipotentials and show their application to one-dimensionalS-unimodal maps. The method proves to be especially suited for describing the noise scaling behavior of invariant probabilities, e.g., for the map occurring as the limit of the Feigenbaum period-doubling sequence. We show that the method allows statements about the scaling behavior in the case of localized noise, too, which does not originally lie within the scope of the quasipotential formalism.  相似文献   

20.
For the shallow group V donors in Si we show that the hyperfine interaction for the donor nucleus and the superhyperfine interactions for the first five shells of Si ligands can be quite accurately calculated using the local spin-density approximation of the density-functional theory. We treat the impurity problem in a Green's function approach. Since we have to truncate the long-ranged part of the defect potential, we do not obtain a localized gap state. Instead we identify the resonance above the conduction band with the paramagnetic defect state. We show that the hf and shf interactions thus obtained are at least as accurate as those obtained from one-electron theories with fitting parameters. Application of this first principles method to other shallow donors could be an essential help in defect identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号