首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents theoretical results on the interaction of cubically nonlinear harmonic elastic plane waves in a nonlinear material described by the Murnaghan potential. The interaction of two harmonic transverse waves is studied using the method of slowly varying amplitude. Reduced and evolution equations and the Manley-Rowe relations are derived. An analysis is made of the mechanism of energy transfer from the strong pumping wave, which has frequency ω, to the weak signal wave, which has frequency 3ω because of this interaction. A switching mechanism for hypersonic waves in a nonlinear elastic material is described, which is similar to the switching mechanism observed in transistors __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 61–70, June 2006.  相似文献   

2.
A summary on transistors and some facts on nanocomposite materials and their classical models are provided. New models used here for computer simulation are described. Results from a theoretical study of the interaction of cubic nonlinear harmonic elastic plane waves in a Murnaghan material are presented. The interaction of two harmonic waves is analyzed using the method of slowly varying amplitudes. The mechanism of energy pumping from a strong pump wave to a weak signal wave is examined. The theoretical and numerical analyses conducted suggest that in theory, a nanocomposite material may be used to create a transistor that would work with hypersonic waves and have a speed in the nanosecond range Translated from Prikladnaya Mekhanika, Vol. 45, No. 1, pp. 90–117, January 2009.  相似文献   

3.
A procedure of deriving nonlinear wave equations that describe the propagation and interaction of hyperelastic cylindrical waves in composite materials modeled by a mixture with two elastic constituents is outlined. Nonlinearity is introduced by metric coefficients, Cauchy-Green strain tensor, and Murnaghan potential. It is the quadratic nonlinearity of all governing relations. For a configuration (state) dependent on the radial coordinate and independent of the angular and axial coordinates, quadratically nonlinear wave equations for stresses are derived and a relationship between the components of the stress tensor and partial strain gradient is established. Four combinations of physical and geometrical nonlinearities in systems of wave equations are examined. Nonlinear wave equations are explicitly written for three of the combinations __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 6, pp. 63–72, June 2007.  相似文献   

4.
The properties of harmonic surface waves in an elastic cylinder made of a rigid material and filled with a fluid are studied. The problem is solved using the dynamic equations of elasticity and the equations of motion of a perfect compressible fluid. It is shown that two surface (Stoneley and Rayleigh) waves exist in this waveguide system. The first normal wave generates a Stoneley wave on the inner surface of the cylinder. If the material is rigid, no normal wave exists to transform into a Rayleigh wave. The Rayleigh wave on the outer surface forms on certain sections of different dispersion curves. The kinematic and energy characteristics of surface waves are analyzed. As the wave number increases, the phase velocities of all normal waves, except the first one, tend to the sonic velocity in the fluid from above __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 48–62, September 2007.  相似文献   

5.
The problem of self-switching plane waves in elastic nonlinearly deformed materials is formulated. Reduced and evolution equations, which describe the interaction of two waves the power pumping wave and the faint signal wave are obtained. For the case of wave numbers matching the pumping and signal waves, a procedure of finding the exact solution of evolution equations is described. The solution is expressed by elliptic Jacobi functions. The existence of the power wave self-switching is shown and commented. To cite this article: J. Rushchitsky, C. R. Mecanique 330 (2002) 175–180.  相似文献   

6.
Consideration is given to the nonlinear theory of elastic waves with cubic nonlinearity. This nonlinearity is separated out, and the interaction of four harmonic waves is studied. The method of slowly varying amplitudes is used. The shortened and evolution equations, the first integrals of these equations (Manley–Rowe relations), and energy balance law for a set of four interacting waves (quadruplet) are derived. The interaction of waves is described using the wavefront reversal scheme  相似文献   

7.
8.
9.
In non-classical nonlinear media, much characteristic information is contained in their dynamic elastic responses. A method combining nonlinear elastic wave spectroscopy (NEWS) with a time-reversal (TR) process is used in this numerical study, in which the presence of one defect and two defects acting with non-classical nonlinearity in an attenuating medium is simulated. Nonlinear defect behavior is introduced using a modified Preisach–Mayergoyz (PM) model. Two methods are used to determine retrofocal quality: harmonic filtering and modulated wave filtering. In the simulation, the nonlinear signal is filtered from the received continuous wave, then reversed and re-sent; a crack image can be obtained from the nonlinear signal in a lossy solid. By comparison with the actual defect, the image can reflect the distribution of one or two flaws, which show the feasibility and value of the NEWS–TR methodology for microdamage imaging of two defects. These results also show that images obtained with different harmonic and modulated frequencies can reflect the presence of defects. With increasing frequency, the crack positions obtained from the image change due to the influence of solid loss and interaction with sound waves.  相似文献   

10.
Waves mentioned in the title were revealed in composite materials that are described by the microstructural theory of the second order — the theory of two-phase mixtures. For harmonic periodic waves, a mixture is always a dispersive medium. This medium admits existence of other waves — waves with profiles described by functions of mathematical physics (the Chebyshov–Hermite, Whittaker, Mathieu, and Lamé functions). If the initial profile of a plane wave is chosen in the form of the Chebyshev–Hermite or Whittaker function, then the wave may be regarded as an aperiodic solitary wave. The dispersivity of a mixture as a nonlinear frequency dependence of phase velocities transforms for nonperiodic solitary waves into a nonlinear phase-dependence of wave velocities. This and some other properties of such waves permit us to state that these waves fall into a new class of waves in materials, which is intermediate between the classical simple waves and the classical dispersion traveling waves. The existence of these new waves is proved in a computer analysis of phase-velocity-versus-phase plots. One of the main results of the interaction study is proof of the existence of this interaction itself. Some features of the wave interaction — triplets and the concept of synchronization — are commented on  相似文献   

11.
Features of the propagation of longitudinal and transverse plane waves along the layers of nanocomposites with process-induced initial stresses are studied. The composite has a periodic structure: it is made by repeating two highly dissimilar layers. The layers exhibit nonlinear elastic behavior in the range of loads under consideration. A Murnaghan-type elastic potential dependent on the three invariants of the strain tensor is used to describe the mechanical behavior of the composite constituents. To simulate the propagation of waves, finite-strain theory is used for developing a problem statement within the framework of the three-dimensional linearized theory of elasticity assuming finite initial strains. The dependence of the relative velocities of longitudinal and transverse waves on two components of small initial stresses in each layer and on the volume fraction of the constituents is studied. It is established that there are thickness ratios of layers in some nanocomposites such that the wave velocities are independent of the initial stresses and equal to the respective wave velocities in composites without initial stresses __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 3–26, April 2007.  相似文献   

12.
The paper is concerned with longitudinal and transverse waves propagating at a right angle to the layers of a nanocomposite material with initial (process-induced residual) stresses. The composite consists of alternating layers of two dissimilar materials. The materials are assumed nonlinearly elastic and described by the Murnaghan potential. For simulation of wave propagation, a problem is formulated within the framework of the three-dimensional linearized theory of elasticity for finite prestrains. It is established that the relative velocities of waves depend linearly on small prestresses. In some composite materials, however, the thicknesses of the layers may be in a ratio such that the wave velocities are independent of the prestress level __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 3–22, July 2006.  相似文献   

13.
A comparative analysis of two types of hyperelastic waves—plane waves (with plane front) and cylindrical waves (with curved front)—is offered. The propagation of the waves is studied theoretically for quadratically nonlinear hyperelastic media and numerically for a class of unidirectional fibrous composite materials. Hyperelasticity is described using the classical Murnaghan potential and a structural model of the first order—the model of effective constants. The internal structure of materials is described by this model and is at the micro-or nanolevels in numerical analysis. Particular attention is given to the evolution of the wave profile. It is studied in three stages: (i) derivation of nonlinear wave equations, (ii) construction of solutions in the form of plane and cylindrical waves, and (iii) numerical analysis of the evolution of these waves in composites with microlevel (Thornel) or nanolevel (Z-CNT) fibers. The main similarities and differences between plane longitudinal and cylindrical waves are shown. The most unexpected result is the striking difference between the evolution patterns numerically observed for plane and cylindrical wave profiles __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 21–46, October 2006.  相似文献   

14.
史杰  王砚 《应用力学学报》2020,(2):566-572,I0007
基于一维颗粒链中产生的高度非线性孤立波,研究孤立波与半无限复合材料体的耦合作用。根据赫兹定律推导了一维颗粒链中颗粒间相互作用的运动微分方程,建立了颗粒链与半无限复合材料体的接触模型。对于颗粒与复合材料的接触,采用已有文献中修正后的赫兹定律,研究了高度非线性孤立波与半无限复合材料体的耦合力学作用机理,推导了颗粒链与半无限复合材料体的相互耦合运动微分方程组,通过数值计算,得到了各颗粒的内力、速度、位移曲线。分析了材料属性对回弹孤立波出现的时间、幅值的影响。结果表明:随着纤维方向弹性模量的增大,次级回弹波出现的时间和波幅都逐渐增大,随着垂直纤维方向弹性模量的增大,次级回弹波出现的时间先减小后增大,次级回弹波的幅值逐渐减小直至消失。  相似文献   

15.
The properties of harmonic surface waves in a fluid-filled cylinder made of a compliant material are studied. The wave motions are described by a complete system of dynamic equations of elasticity and the equation of motion of a perfect compressible fluid. An asymptotic analysis of the dispersion equation for large wave numbers and a qualitative analysis of the dispersion spectrum show that there are two surface waves in this waveguide system. The first normal wave forms a Stoneley wave on the inside surface with increase in the wave number. The second normal wave forms a Rayleigh wave on the outside surface. The phase velocities of all the other waves tend to the velocity of the shear wave in the cylinder material. The dispersion, kinematic, and energy characteristics of surface waves are analyzed. It is established how the wave localization processes differ in hard and compliant materials of the cylinder __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 72–86, April 2008.  相似文献   

16.
The influence of the second and third harmonics on the evolution of a harmonic longitudinal wave propagating through a nonlinearly elastic material has been simulated for real composite materials (the most typical plots are presented for a granulated composite with copper granules and molybdenum matrix). The frequency and initial amplitude are varied beginning from conditionally small values (at which visible distortions appear after a great number of oscillations) to extremely large values (at which the profile becomes distorted already after the second or third oscillation). Four and three different stages of profile evolution due to the influence of the second and third harmonics, respectively, are observed. It is found out that the effect of the initial amplitude on the evolution process is weaker for the second harmonic, and the effect of the frequency on the evolution process is weaker for the third harmonics. It is also revealed that the ranges of frequencies and initial amplitudes within which the evolution caused by different harmonics is very intensive are different—the effect of the third harmonic is stronger at larger values of both parameters. The effects of both harmonics are tantamount within the boundary ranges where the second harmonic is already predominant and the third harmonic is at the early stage of development  相似文献   

17.
Water waves in an elastic vessel   总被引:2,自引:0,他引:2  
Linear and nonlinear analyses of water waves in an elastic vessel are carried out to study the dramatic phenomena of Dragon Wash as well as related controllable experiments. It is proposed that the capillary edge waves are generated by parametric resonance, which is shown to be a possible mechanism for both rectangular an circular vessels. For circular vessel, the normal geometric resonance is also operating, thus greatly enhance the dramatic effect. The mechanism of nonlinear mode-mode interaction is proposed for the generation of axisymmetric low-frequency gravity waves by the high- frequency external excitation. A simple model system is studied numerically to demonstrate explicitly this interaction mechanism.  相似文献   

18.
This paper is a review of studies on quadratically and cubically nonlinear elastic waves in elastic materials. The main methods for analysis of the wave equations are demonstrated. The main wave phenomena are described. The disproportion between the achievements in the analyses of quadratically and cubically nonlinear waves is pointed out—cubically nonlinear waves have been studied much less  相似文献   

19.
The shapes of magnetoelastic shear body waves in periodically inhomogeneous magnetostrictive dielectric media are studied with emphasis on wave shapes in the neighborhood of the zones of interaction of elastic and magnetostatic waves __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 13–20, October 2006.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号