首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this contribution we present a new type of optoelectronic silicon nanocrystal (Si-nc) based material, namely, Si-nc embedded into solidified pure or doped spin-on-glasses. The resulting self-supporting samples contain thin layers with high Si-nc concentrations. The visible photoluminescence (PL) maximum at room temperature is blue-shifted when the concentration of phosphorus in the spin-on-glass is increased.  相似文献   

2.
We present photoluminescence and electroluminescence of silicon nanocrystals deposited by plasma-enhanced chemical vapor deposition (PECVD) using nanocrystalline silicon/silicon dioxide (nc-Si/SiO2) superlattice approach. This approach allows us to tune the nanocrystal emission wavelength by varying the thickness of the Si layers. We fabricate light emitting devices (LEDs) with transparent indium tin oxide (ITO) contacts using these superlattice materials. The current-voltage characteristics of the LEDs are measured and compared to Frenkel-Poole and Fowler-Nordheim models for conduction. The EL properties of the superlattice material are studied, and tuning, similar to that of the PL spectra, is shown for the EL spectra. Finally, we observe the output power and calculate the quantum efficiency and power conversion efficiency for each of the devices.  相似文献   

3.
The influence of P ion doping on the photoluminescence (PL) of the system of nanocrystals in SiO2 matrix (SiO2:Si) both without annealing and after annealing at various temperatures (provided before and after additional P implantation) is investigated. The Si and P implantation was carried out with ion energies of 150 keV and doses ΦSi=1017 cm−2 and ΦP=(0.1–300)×1014 cm−2 (current density j3 μAcm−2). The system after Si implantation was formed at 1000°C and 1100°C (2 h). For the case of SiO2:Si system as-implanted by P, the intensity of PL was drastically quenched, but partially retained. As for the step-by-step annealing (at progressively increased temperatures) carried out after P implantation, the sign and degree of doping effect change with annealing temperature. The possible mechanisms of these features are discussed.  相似文献   

4.
The ability of surface passivation to enhance the photoluminescence (PL) emission of Si nanocrystals in SiO2 has been investigated. Silicon precipitation in implanted samples takes place in a time scale of few minutes at 1100°C. For longer annealing at the same temperature, the PL intensity of the Si nanocrystals increases and eventually reaches saturation, while it correlates inversely with the amount of Si dangling bonds at the Si–SiO2 interface (Pb centers), as measured by electron spin resonance. This combined behavior is independent on the silica matrix properties, implantation profiles and annealing atmosphere and duration. The observation that the light emission enhancement is directly related to the annealing of Pb centers is confirmed by treatment in forming gas. This mild hydrogenation at much lower temperature (450°C) leads to a complete passivation of the Pb defects, increasing at the same time the PL yield and the lifetime.  相似文献   

5.
The photoluminescence (PL) emission yield of Si nanocrystals embedded in SiO2 depends on their size and on Si–SiO2 interface passivation. In this work we aim at clarifying the relative importance of both contributions by studying lifetimes and absorption cross-sections as a function of size, for samples with and without passivation in forming gas. We find that while the PL lifetime increases steadily (quasi-linear dependence), the radiative lifetime increases exponentially with the nanocrystal size. Thus, as expected, radiative oscillator strengths are much smaller for large nanocrystals, but this reduction is partially compensated by a less effective quenching at interfacial non-radiative states. The absorption cross-section per nanocrystal rises as the nanocrystal size decreases, for all excitation wavelengths, implying that the variation of oscillator strength dominates over the reduction of the density of states. Passivation processes do not affect the emission mechanism and increase the emission yield while reducing the density of non-radiative recombination centers at the Si–SiO2 interface (Pb centers).  相似文献   

6.
We report in detail on the dynamics of photoexcited charge carriers in size-controlled silicon nanocrystals in silicon nanocrystal/SiO2 superlattices. The samples were prepared using plasma enhanced chemical vapor deposition and subsequent thermally induced phase separation. This unique approach allows preparation of well-defined Si nanocrystals. Experimental techniques of time-resolved absorption and photoluminescence were used to monitor the carrier dynamics on a wide time scale from picoseconds to milliseconds for a set of samples with different parameters (nanocrystal size, hydrogen annealing). The initial fast decay (tens of picoseconds) dependent on pump intensity for excitation levels exceeding one electron–hole pair per nanocrystal can be interpreted in terms of the bimolecular recombination with constant B=(2–3)×10−10 cm3 s−1. The slow pump intensity independent decay (microseconds) can be reproduced well by a stretched-exponential function. The dependence of stretched-exponential parameters on photoluminescence photon energy and sample properties agrees well with the picture of trapped carriers.  相似文献   

7.
A Raman frequency upshift of nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100 ℃ for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high grown temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-induced stress indicates a new method to tune the optical and the electronic properties of Si nanocrystals for strained engineering.  相似文献   

8.
In this paper, we have studied the effect of the thickness of the initial SiO2 layer (5–7 nm) on the charge and discharge properties of a 2D array of Si nanoparticles embedded in these SiO2 layers fabricated by ultra-low-energy ion implantation (ULE-II) and annealing. The structural characteristics of these nanocrystal-based memories (position of the nanocrystals with respect to the electrodes, size and surface density of the particles in the plane) were studied by transmission electron microscopy (TEM) and energy filtered TEM (EF-TEM). Electrical characterizations were performed at room temperature using a nano-MOS capacitor to be able to address only a few nanoparticles (nps). EFTEM gives the measurements of oxide thickness, injection, control and nps distances, size and density. IV and It measurements exhibit current peaks and random telegraph signal fluctuations that can be interpreted as due to quantized charging of the nps and to some electrostatic interactions between the trapped charges and the tunnelling current. We have shown that these characteristics strongly vary with the initial oxide thickness, exhibiting several charging/discharging events for the 7-nm-thick layer while charging events prevail in the case of 5-nm-thick layer. These results indicate that the probability of discharging phenomena is reduced when the tunnel layer thickness decreases.  相似文献   

9.
Si nanograins embedded in silica matrix were obtained by magnetron cosputtering of both Si and SiO2 at different substrate temperature (200–700°C) and thermal annealing at 1100°C. The samples were characterized by ellipsometric spectroscopy, high-resolution electron microscopy observations and photoluminescence. The highest excess of Si atoms was found to be incorporated for deposition temperature near 400–500°C, giving rise to a maximum PL and a shift of the peak position towards lower energy. These features might be interpreted in terms of quantum size effects and of density of grains, even though the interface states seem to be involved in the improvement of the photoluminescence efficiency.  相似文献   

10.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

11.
Macroscopic quantities (g/h) of Si nanoparticles were prepared by laser pyrolysis of silane and showed photoluminescence (PL) emission in the range 700-1050 nm after oxidation in air at a temperature T ≥ 700 °C. Two different strategies were followed to reduce as-produced particle agglomeration which hinders most of the applications, namely etching with either acid or alkaline solutions. Well isolated single particles were detected after acid etching in HF. Disaggregation was also achieved by the combined effect of the high power sonication and alkaline etching by tetra-methyl ammonium hydroxide (TMAH), which leaves OH terminated surfaces. However, in both cases re-aggregation was observed within a few hours after oxide removal. Stable dispersions of Si nanoparticles in different solvents were obtained by treatments of H-terminated surfaces with the surfactant TOPO (C24H51PO, trioctylphospine oxide) and by treatment of OH-terminated surfaces with Na3PO4.  相似文献   

12.
Thermoluminescence (TL) and photoluminescence studies have been carried out on CaSO4:Tb, CaSO4:Ce and CaSO4:Tb,Ce phosphors with the aim of studying energy transfer process in the CaSO4:Tb,Ce phosphor. CaSO4:Tb,Ce shows TL peaks at 150, 220, 320 and 400°C. Changes in Tb and Ce concentrations influence the relative heights of these glow peaks. Co-doping with 0.1 mol% of Ce in CaSO4:Tb enhances the sensitivity of 320oC TL peak by a factor of 15. Fluorescence results show that there is energy transfer from Ce to Tb ion. The defect centres formed in CaSO4:Tb,Ce phosphor are studied using electron spin resonance technique. The 320oC glow peak correlates with a centre (SO3radical) with g-values: g||=2.0061 and g=2.0026.  相似文献   

13.
Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites with different weight percentages of NiCuZn ferrite dispersed in silica matrix were prepared by microwave-hydrothermal method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiCuZn ferrite. The structure and morphology of the composites were studied using X-ray diffraction and scanning electron microscopy. The structural changes in these samples were characterized using Fourier Transform Infrared Spectrometer in the range of 400-1500 cm−1. The bands in the range of 580-880 cm−1 show a slight increase in intensity, which could be ascribed to the enhanced interactions between the NiCuZnFe2O4 clusters and silica matrix. The effects of silica content and sintering temperature on the magnetic properties of Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites have been studied using electron spin resonance and vibrating sample magnetometer.  相似文献   

14.
We studied the growing process of Ge dots on silicon substrates covered with an ultrathin silicon dioxide buffer layer which was formed with simple chemical procedure. Uniform and densely packed (1011 cm−2) quantum dots (QDs) were obtained by optimizing the growth parameter with the MBE method. The influence of temperature, coverage, as well as the post-annealing process, on the epitaxial and non-epitaxial nanodots formation was evaluated. Nano-sized high density quantum dots were also realized with different growing conditions, whose structural and growing mechanism were discussed under the help of SEM and RHEED results.  相似文献   

15.
Silicon ions were implanted into the films of silicon oxide obtained by thermal oxidation of silicon wafers in a damp oxygen. Accumulation of the implantation dose was performed either in one step or cyclically in step-by-step mode, and after each stage of implantation the samples were annealed in a dry nitrogen. The second series of the samples differed from the first one by the formation of SiO2 matrix that included additional annealing in the air at 1100 °C for 3 h before ion implantation. X-ray absorption near edge structure (XANES) was obtained with the use of synchrotron radiation. Two absorption edges were observed in all of Si L2,3-spectra. One of them is related to elementary silicon while the other one-to silicon in SiO2. The fine structure of the first one indicates the formation of nanocrystalline silicon nc-Si in SiO2 matrix. Its atomic and electron structure depends on the technology of formation. For both series of samples, a cyclical accumulation of the total dose Φ=1017 cm−2 (for the total time of annealing—2 h) resulted in the appearance of more distinct structure in the range of absorption edge for the elementary silicon as compared with the case of single-step accumulation dose. In the more “dense” oxide of the samples from the second series, the probability of formation of silicon nanocrystals in a thin near-surface region of the implanted layer was reduced. These results can be interpreted with the account of the previously obtained photoluminescence, Raman scattering and electron microscopy data for these samples.  相似文献   

16.
We study theoretically the optical properties of embedded Ge and Si nanocrystals (NCs) in wide band-gap matrix and compared the obtained results for both NCs embedded in SiO2 matrix. We calculate the ground and excited electron and hole levels in both Ge and Si nanocrystals (quantum dots) in a multiband effective mass approximation. We use the envelope function approximation taking into account the elliptic symmetry of the bottom of the conduction band and the complex structure of the top of the valence band in both Si and Ge (NCs). The Auger recombination (AR) in both nanocrystals is thoroughly investigated. The excited electron (EE), excited hole (EH) and biexciton AR types are considered. The Auger recombination (AR) lifetime in both NCs has been estimated and compared.  相似文献   

17.
We construct the theory of carriers confined in Si quantum dots with finite energy barriers for electrons and holes in the framework of the multiband effective mass theory. We apply this theory for theoretical modeling of the excitation of erbium inside and outside of Si nanocrystals in SiO2 matrix due to the Auger process induced by the recombination of a confined electron-hole pair as well as the intraband transitions of “hot” confined carriers. Auger de-excitation processes of the Er3+ ion leading to the quenching of erbium luminescence are discussed as well.  相似文献   

18.
19.
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations.  相似文献   

20.
YVO4:Eu, and YVO4:Eu/SiO2 nanocrystals (NCs) were prepared by hydrothermal method with citrate as capping ligands. Their morphologies, structures, components, and photoluminescence properties were investigated and presented in this paper. A remarkable fluorescence enhancement up to 2.17 times was observed in colloidal YVO4:Eu/SiO2 NCs, compared to that of colloidal YVO4:Eu NCs. This is mainly attributed to the formation of the outer protecting layers of biocompatible SiO2 shells; which shield the Eu3+ ions effectively from water and thus reduces the deleterious effects of water on the luminescence. Meanwhile, on the basis of laser selective excitation, two kinds of luminescent centers were confirmed in the NCs, namely, inner Eu3+ ions and surface Eu3+ ions. The surface modifications for YVO4:Eu NCs effectively reduced the surface defects and accordingly enhanced the luminescence. The core/shell NCs exhibited long fluorescence lifetime and high photostability under ultraviolet radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号