首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We study covariant differential calculus on the quantum Euclidean spheres S q N−1 which are quantum homogeneous spaces with coactions of the quantum groups O q (N). First order differential calculi on the quantum Euclidean spheres satisfying a dimension constraint are found and classified: ForN≥6, there exist exactly two such calculi one of which is closely related to the classical differential calculus in the commutative case. Higher order differential forms and symmetry are discussed. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000.  相似文献   

2.
The associate mean-spherical approximation (AMSA) is used to derive the closed-form expressions for the thermodynamic properties of an (n+m)-component mixture of sticky charged hard spheres, with m components representing polyions and n components representing counterions. The present version of the AMSA explicitly takes into account association effects due to the high asymmetry in charge and size of the ions, assuming that counterions bind to only one polyion, while the polyions can bind to an arbitrary number of counterions. Within this formalism an extension of the Ebeling–Grigo choice for the association constant is proposed. The derived equations apply to an arbitrary number of components; however, the numerical results for thermodynamic properties presented here are obtained for a system containing one counterion and one macroion (1+1 component) species only. In our calculation the ions are pictured as charged spheres of different sizes (primitive model) embedded in a dielectric continuum. Asymmetries in charge of –10:+1, –10:+2, –20:+1, and –20:+2 and asymmetries in diameter of 2:0.4nm and 3:0.4nm are studied. Monte Carlo simulations are performed for the same model solution. By comparison with new and existing computer simulations it is demonstrated that the present version of the AMSA provides semiquantitative or better predictions for the excess internal energy and osmotic coefficient in the range of parameters where the regular hypernetted chain (HNC) and improved (associative) HNC do not yield convergent solutions. The AMSA liquid–gas phase diagram in the limit of complete association (infinitely strong sticky interaction) is calculated for models with different degrees of asymmetry.  相似文献   

3.
The quantum corrections to the thermodynamic properties of polar hard sphere fluids and fluid mixtures are estimated taking into account the influence of dipole and quadrupole moments. Expressions are given for the second virial coefficient, free energy and pressure and results are given for different values ofμ* andϑ*. The first order quantum correction arises due to the translational contribution only. The quantum effect increases with density,μ* andϑ*. Numerical results are also estimated for binary mixtures of (i) hard spheres and dipole hard spheres and (ii) hard spheres and quadrupole hard spheres. The ‘excess’ free energy for dipole hard sphere binary mixture is also reported. It is found that the ‘excess’ quantum effect depends on the concentration and the particle diameter ratio and increases with increase ofμ* andϑ*.  相似文献   

4.
We study the q-deformed fuzzy sphere, which is related to D-branes on SU(2) WZW models, for both real q and q a root of unity. We construct for both cases a differential calculus which is compatible with the star structure, study the integral, and find a canonical frame of one-forms. We then consider actions for scalar field theory, as well as for Yang–Mills and Chern–Simons-type gauge theories. The zero curvature condition is solved.  相似文献   

5.
We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function qτ(t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as . The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.  相似文献   

6.
The Borel-Weil (BW) construction for unitary irreps of a compact Lie group is extended to a construction of all unitary irreps of the quantum groupU q(n). Thisq-BW construction uses a recursion procedure forU q(n) in which the fiber of the bundle carries an irrep ofU q(n–1)×U q(1) with sections that are holomorphic functions in the homogeneous spaceU q(n)/U q(n–1)×U q(1). Explicit results are obtained for theU q(n) irreps and for the related isomorphism of quantum group algebras.Supported in part by the National Science Foundation, No. PHY-9008007  相似文献   

7.
The asymmetric correlated-hopping Hubbard model is analysed perturbatively for large values of the Coulomb interaction U. An effective Hamiltonian is obtained up to terms of the order U –3. For d=2 and in the limit of the strong asymmetry, the orderings of the ground states are found (confirming earlier nonrigorous results). Their thermal and quantum stability is proved. These results have been obtained by an application of the quantum Pirogov–Sinai theory in the variant developed by Datta, Fernandez, Fröhlich, and Rey-Bellet.  相似文献   

8.
We give explicit realization for the quantum enveloping algebras U q(B n). In these formulae the generators of the algebra are expressed by means of 2n–1 canonical q-boson pairs and one auxiliary representation of U q(B n–1)  相似文献   

9.
We establish a noncommutative analogue of the first fundamental theorem of classical invariant theory. For each quantum group associated with a classical Lie algebra, we construct a noncommutative associative algebra whose underlying vector space forms a module for the quantum group and whose algebraic structure is preserved by the quantum group action. The subspace of invariants is shown to form a subalgebra, which is finitely generated. We determine generators of this subalgebra of invariants and determine their commutation relations. In each case considered, the noncommutative modules we construct are flat deformations of their classical commutative analogues. Our results are therefore noncommutative generalisations of the first fundamental theorem of classical invariant theory, which follows from our results by taking the limit as q → 1. Our method similarly leads to a definition of quantum spheres, which is a noncommutative generalisation of the classical case with orthogonal quantum group symmetry.  相似文献   

10.
We study a large class F of models of the quantum statistical mechanics dealing with two types of particles. First the spinless electrons are quantum particles obeying to the Fermi statistics, they can hop. Secondly the ions which cannot move, are classical particles. The Falicov–Kimball (FK) model(1) is a well known model belonging to F, for which the existence of an antiferomagnetic phase transition was proven in the seminal paper of Kennedy and Lieb.(2) This result was extended by Lebowitz and Macris.(3) A new approach to this problem based on quantum selection of the ground states was proposed in ref. 4. In this paper we extend this approach to show that, under the strong insulating condition, any hamiltonian of the class F admits, at every temperature, an effective hamiltonian, which governs the behaviour of the ions interacting through forces mediated by the electrons. The effective hamiltonians are long range many body Ising hamiltonians, which can be computed by a cluster expansion expressed in term of the quantum fluctuations. Our main result is that we can apply the powerfull results of the classical statistical mechanics to our quantum models. In particular we can use the classical Pirogov–Sinai theory to establish a hierarchy of phase diagrams, we can also study of the behaviour of the quantum inter- faces,(29) and so on...  相似文献   

11.
Theoretical and experimental studies of restricted diffusion have been conducted for decades using single pulsed field gradient (s-PFG) diffusion experiments. In homogenous samples, the diffusion–diffraction phenomenon arising from a single population of diffusing species has been observed experimentally and predicted theoretically. In this study, we introduce a composite bi-compartmental model which superposes restricted diffusion in microcapillaries with free diffusion in an unconfined compartment, leading to fast and slow diffusing components in the NMR signal decay. Although simplified (no exchange), the superposed diffusion modes in this model may exhibit features seen in more complex porous materials and biological tissues. We find that at low q-values the freely diffusing component masks the restricted diffusion component, and that prolongation of the diffusion time shifts the transition from free to restricted profiles to lower q-values. The effect of increasing the volume fraction of freely diffusing water was also studied; we find that the transition in the signal decay from the free mode to the restricted mode occurs at higher q-values when the volume fraction of the freely diffusing water is increased. These findings were then applied to a phantom consisting of crossing fibers, which demonstrated the same qualitative trends in the signal decay. The angular d-PGSE experiment, which has been recently shown to be able to measure small compartmental dimensions even at low q-values, revealed that microscopic anisotropy is lost at low q-values where the fast diffusing component is prominent. Our findings may be of importance in studying realistic systems which exhibit compartmentation.  相似文献   

12.
13.
A simple example of classical physics may be defined as classical variables, p and q, and quantum physics may be defined as quantum operators, P and Q. The classical world of p&q, as it is currently understood, is truly disconnected from the quantum world, as it is currently understood. The process of quantization, for which there are several procedures, aims to promote a classical issue into a related quantum issue. In order to retain their physical connection, it becomes critical as to how to promote specific classical variables to associated specific quantum variables. This paper, which also serves as a review paper, leads the reader toward specific, but natural, procedures that promise to ensure that the classical and quantum choices are guaranteed a proper physical connection. Moreover, parallel procedures for fields, and even gravity, that connect classical and quantum physical regimes, will be introduced.  相似文献   

14.
We describe noncommutative geometric aspects of twisted deformations, in particular of the spheres of Connes and Landi and of Connes and Dubois Violette, by using the differential and integral calculus on these spaces that is covariant under the action of their corresponding quantum symmetry groups. We start from multiparametric deformations of the orthogonal groups and related planes and spheres. We show that only in the twisted limit of these multiparametric deformations the covariant calculus on the plane gives, by a quotient procedure, a meaningful calculus on the sphere. In this calculus, the external algebra has the same dimension as the classical one. We develop the Haar functional on spheres and use it to define an integral of forms. In the twisted limit (differently from the general multiparametric case), the Haar functional is a trace and we thus obtain a cycle on the algebra. Moreover, we explicitly construct the *-Hodge operator on the space of forms on the plane and then by quotient on the sphere. We apply our results to even spheres and compute the Chern–Connes pairing between the character of this cycle, i.e. a cyclic 2n-cocycle, and the instanton projector defined in math.QA/0107070.  相似文献   

15.
We discuss a certain class of two-dimensional quantum systems which exhibit conventional order and topological order, as well as quantum critical points separating these phases. All of the ground-state equal-time correlators of these theories are equal to correlation functions of a local two-dimensional classical model. The critical points therefore exhibit a time-independent form of conformal invariance. These theories characterize the universality classes of two-dimensional quantum dimer models and of quantum generalizations of the eight-vertex model, as well as and non-abelian gauge theories. The conformal quantum critical points are relatives of the Lifshitz points of three-dimensional anisotropic classical systems such as smectic liquid crystals. In particular, the ground-state wave functional of these quantum Lifshitz points is just the statistical (Gibbs) weight of the ordinary two-dimensional free boson, the two-dimensional Gaussian model. The full phase diagram for the quantum eight-vertex model exhibits quantum critical lines with continuously varying critical exponents separating phases with long-range order from a deconfined topologically ordered liquid phase. We show how similar ideas also apply to a well-known field theory with non-Abelian symmetry, the strong-coupling limit of 2+1-dimensional Yang–Mills gauge theory with a Chern–Simons term. The ground state of this theory is relevant for recent theories of topological quantum computation.  相似文献   

16.
We define even dimensional quantum spheres 2n q that generalize to higher dimension the standard quantum two-sphere of Podle and the four-sphere 4 q obtained in the quantization of the Hopf bundle. The construction relies on an iterated Poisson double suspension of the standard Podle two-sphere. The Poisson spheres that we get have the same kind of symplectic foliation consisting of a degenerate point and a symplectic 2n and, after quantization, have the same C * –algebraic completion. We investigate their K-homology and K-theory by introducing Fredholm modules and projectors.  相似文献   

17.
18.
A previously proposed version of thermodynamic perturbation theory, appropriate for singular pair interactions between particles, is applied to binary mixtures of hard spheres with non-additive diameters. The critical non-additivity ΔC required to drive fluid–fluid phase separation is determined as a function of the ratio ξ ≤ 1 of the diameters of the two species. ΔC(ξ) is found to decrease with ξ and to go through a minimum for ξ ? 0.015 before increasing sharply as ξ → 0, irrespective of the total packing-fraction η of the mixture. These results are the basis of an estimate of the range of size ratios for which a binary mixture of additive hard spheres exhibit a fluid–fluid miscibility gap. This range is conjectured to be 0.01 ? ξ ? 0.1.  相似文献   

19.
Inhomogeneous quantum groups corresponding to the homogeneous quantum groupsU q (N), SO q (N) and theq-deformed Lorentz group acting on affine quantum spaces are constructed. Special representations of the translation part are investigated.Presented at the Colloquium on the Quantum Groups, Prague, 18–20 June, 1992.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号