首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The thermal decomposition process and pyrolysis products of poly(vinyl phenyl ketone) (PVPK) were investigated by thermogravimetric analysis (TGA) and on-line pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS). TGA showed a largest weight loss rate around 380 °C. Py-GC–MS was used for the qualitative analysis of the pyrolysis products at 350, 500, 600, 700 and 850 °C. The major volatile thermal decomposition product was found to be 1-phenyl-2-propenone, which dominated all other volatile species especially under the least severe pyrolysis conditions (<600 °C). At higher temperatures a much wider range of pyrolysis products was obtained. The results have been interpreted assuming that primary random chain scission reactions occur followed by typical unzipping mainly producing monomer units; detachment of the side-group occurs only under more severe pyrolysis conditions. Py-GC–MS showed to be effective in PVPK detection in ink and paint formulations.  相似文献   

2.
The pyrolysis of two grape residues (grape skins and the mixture of grape skins and seeds) has been carried out in a pilot bubbling fluidized bed pyrolyzer operating under a range of temperature from 300 to 600 °C and three vapor residence time (2.5, 5, and 20 s), with the aim of determining their pyrolysis behavior including products yields and heat requirements. The composition of the product gases was determined, from which their heating value was calculated. The liquid bio-oil was recovered with cyclonic condensers and separated into two phases, an aqueous phase and an organic phase. The chemical composition of these liquid phases was characterized. In addition, the environmental parameters of the distilled fraction (85–115 °C) of the aqueous phase were tested, while the heating value of the organic phase was determined. Furthermore, the thermal sustainability of the pyrolysis process was estimated by considering the energy contribution of the product gases and of the liquid bio-oil in relation to the pyrolysis heat requirements. The optimum pyrolysis temperatures were identified in terms of maximizing the liquid yield, maximizing the energy from the product bio-oil, and maximizing the net energy from the product bio-oil after ensuring a self-sustainable process by utilizing the product gases and bio-oil as heat sources.  相似文献   

3.
A range of substituted ferrocenes were used as catalysts for the synthesis of multi-walled carbon nanotubes (MWCNTs) and carbon fibers (CFs). These products were obtained in the temperature range 800-1000 °C, in a reducing atmosphere of 5% H2 by pyrolysis of (CpR)(CpR′)Fe (R and R′ = H, Me, Et and COMe) in toluene solution. The effect of pyrolysis temperature (800-1000 °C), catalyst concentration (5 and 10 wt.% in toluene) and solution injection rate (0.2 and 0.8 ml/min) on the type and yield of carbonaceous product synthesized was investigated. Carbonaceous products formed include graphite film (mostly at high temperature; 900-1000 °C), carbon nanotubes and carbon fibers. The carbonaceous materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The ferrocene ring substituents influenced both the CNT diameter and the carbon product formed.  相似文献   

4.
In the present work, pyrolysis and combustion of the sewage sludge (fresh and composted) have been simulated using five fractions: low stability organic compounds, hemicellulose, cellulose, lignin-plastic, and inorganic compounds. Thermal behavior and kinetic parameters (pre-exponential factor and apparent activation energy) of the main components of the sludge are similar to those reported for hemicellulose, cellulose, and lignin present in lignocellulosic biomass. Comparing non-isothermal thermogravimetric analysis data obtained from fresh and composted sewage sludge, it is possible to measure the efficiency of the composting process. Most of the biodegradable matter is volatized in a temperature range from 150 °C to 400 °C. Non-biodegradable organic matter volatilizes between 400 °C and 550 °C. In both, fresh and composted sludges, oxygen presence increases the mass loss rate at any temperature, but differences between pyrolysis and combustion are focused in two clearly defined ranges. At low temperature (200–350 °C), mass loss is related with a volatilization process. At higher temperature (350–550 °C), mass loss is due to slow char oxidation (oxidative pyrolysis).  相似文献   

5.
Pyrolytic reactions of Japanese cedar (Cryptomeria japonica, a softwood) and Japanese beech (Fagus crenata, a hardwood) milled wood lignins (MWLs) were studied with thermogravimetry (TG) and by pyrolysis in a closed ampoule reactor (N2/600 °C). The data were compared with those of guaiacol/syringol as simple lignin model aromatic nuclei. Several DTG peaks were observed around 300-350, 450, 590 and 650 °C. The first DTG peak temperature (326 °C) of beech was lower than that (353 °C) of cedar. This indicates that the volatile formation from cedar MWL is slightly delayed in heating at 600 °C. The gas-phase reactions via GC/MS-detectable low MW products were explainable with the temperature-dependent reactions observed for guaiacol/syringol in our previous paper. The methoxyl groups became reactive at ∼450 °C, giving O-CH3 homolysis products (catechols/pyrogallols) and OCH3 rearrangement products (cresols/xylenols). The former homolysis products were effectively converted into gaseous products (mainly CO) at >550-600 °C. However, the GC/MS-detectable tar yields, especially syringyl unit-characteristic products, were much lower than those from guaiacol/syringol. Thus, contributions of higher MW intermediates and solid/liquid-phase reactions are more important in lignin pyrolysis. From the results of stepwise pyrolysis of char + coke fractions at 450 and 600 °C, the methoxyl group-related reactions (450 °C) and intermediates gasification (600 °C) were suggested to occur also in the solid/liquid phase. This was consistent with the DTG peaks observed around these temperatures. These solid/liquid-phase reactions reduced the tar formation, especially catechols/pyrogallols and PAHs. Different features observed between these two MWLs are also focused.  相似文献   

6.
The two-stage pyrolysis of fuel oil and vacuum residues separated from Egyptian crude oil have been carried out using a batch-type reactor technique. In the first stage, feedstocks undergo catalytic cracking in the presence of platinum as a catalyst at temperatures ranging between 380 and 460 °C and 440 and 520 °C for fuel oil and vacuum residues, respectively. Products are carried by argon gas for subsequent pyrolysis in the second stage at temperatures ranging between 700 and 820 °C and 700 and 800 °C for fuel oil and vacuum residues, respectively. The gas yields are about 94.1 and 82.0 wt% of the total products. The gases comprise saturated (C1----C5) and unsaturated hydrocarbons (ethylene, propylene, and butenes). By using platinum wire in the pyrolysis of fuel oil, the ethylene yield increases slightly as the temperature of the first stage increases, while it remains almost unchanged in the pyrolysis of vacuum residue. On the other hand, the propylene yield decreases slightly as the temperature of the first stage increases in the two feedstocks. By using a platinum sheet, the ethylene yield is doubled under the same conditions and increases slightly with an increase of temperature in the second stage. On the other hand, the propylene yield varies inversely with the temperature of the second stage by using platinum, whether as wire or sheet, although the yield is higher when platinum sheet is used under the same conditions.  相似文献   

7.
煤热解过程中含氮气相产物转化规律的实验研究   总被引:3,自引:1,他引:2  
为了研究煤在热解过程中含氮气相产物的生成规律,在滴管炉反应系统中对四种原煤以及两种脱除矿物质煤样分别在500℃、700℃、900℃和1100℃进行了实验研究。结果表明,随着温度的升高,作为NO前驱物的HCN和NH3的收率随之增加,N2的收率也增加。煤种对含氮气相产物的生成规律也有着较大的影响,煤化程度比较低的煤在热解过程中,燃料氮向气相含氮产物的转化率较高;煤化程度比较高的煤转化率则偏低,大部分的氮缩聚在多环芳香结构中,成为焦炭氮。煤中的矿物质对燃料氮向N2的转化起到了促进作用,而对燃料氮向HCN和NH3的转化起到了抑制作用。  相似文献   

8.
The effect of reaction conditions on product distribution from the co-pyrolysis of amino acids with glucose was studied. Three different amino acids, proline, tryptophan and asparagine, were studied. Some experiments were also conducted with aspartic acid, glutamic acid and glutamine. Equimolar binary mixtures of each amino acid and glucose were pyrolyzed at 300 °C to obtain low temperature char (LTC) and low temperature tar (LTT). The LTC in each case was then pyrolyzed further at 625 °C to obtain high temperature char (HTC) and high temperature tar (HTT). In a few experiments, the LTT and HTT were also pyrolyzed at 870 °C (secondary cracking) to obtain the final tars (LTFT and HTFT, respectively) and study the formation of polycyclic aromatic compounds (PACs) via secondary reactions. Experiments were also conducted at different amino acid/glucose molar ratio or at a temperature of 200 °C. All the experiments were performed in an inert atmosphere. The extent of interaction between the amino acids and glucose was determined by comparing the observed results to that calculated from the separate pyrolyses of amino acids and glucose. At 200 °C, the co-pyrolysis led to lower LTC yields relative to the calculated yields. At 300 and 625 °C the yields of LTC and HTC were mostly higher whereas those of LTT and HTT were lower than the calculated yields, except for asparagine and aspartic acid where the observed and calculated LTC yields were comparable. Although proline formed no char in the absence of glucose, it gave a significant amount of nitrogen-containing char when co-pyrolyzed with glucose. The pyrolysis tars contained a number of nitrogenous products not observed from the pyrolysis of amino acids alone. After the secondary cracking, the product changed from mainly single-ring heterocycles to PACs and, in some cases, PAHs.  相似文献   

9.
Rapid pyrolysis of 6 biomass/coal blends (1:4, wt) including rice straw + bituminous (RS + B), rice straw + anthracite (RS + A), chinar leaves + bituminous (CL + B), chinar leaves + anthracite (CL + A), pine sawdust + bituminous (PS + B), and pine sawdust + anthracite (PS + A) was carried out in a high-frequency magnetic field based furnace at 600-1200 °C. The reactor could not only achieve high heating rates of fuel samples but also make biomass and coal particles contact well; secondary reactions of primary products during rapid pyrolysis can also be efficiently reduced. By comparing nitrogen distributions in products of blends (experimental values) with those of the sums of individual biomass and coal (weighted values), nitrogen conversion characteristics under rapid pyrolysis of biomass/coal blends were investigated. Results show that, biomass particles in blends lead to higher experimental char-N yields than the weighted values during rapid pyrolysis of biomass/anthracite blends. The decreased heating rates of both biomass and coal particles caused by the low packing densities of biomass may be the reason. For blends of CL + B in which packing density of chinar leaves is high, and for PS + B during pyrolysis of which melting and shrinkage happen to pine sawdust, both biomass and coal particles can obtain high heating rates, synergies can be found to promote nitrogen release from fuel samples and decrease char-N yields under all the conditions. But the low fluidity and not easily collapsed carbon skeletons of rice straw make the heating rates of rice straw and bituminous particles in RS + B lower than those of CL + B and PS + B, and weaker synergies can be found from char-N yields of RS + B. The synergies can obviously be found to decrease the (NH3 + HCN)-N yields and make more nitrogen convert to N2 except for those of several low-temperature conditions (600-700 °C). Under the low-temperature (600-700 °C) condition, synergies make molar ratios of HCN-N/NH3-N higher than those of the weighted values.  相似文献   

10.
Urea has been intercalated mechanochemically into dehydrated halloysite and analyzed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance ultraviolet/visible spectroscopy (DRUV–VIS), thermal analysis (TGA/DTA), transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR). The basal distance expands from 7.4 to 10.7 Å and the interaction of urea to adjacent layers of halloysite through hydrogen bonds increases the structural order of the matrix. After heat treatment in air at different temperatures, decomposition products begin to appear starting from 100 °C. Although the basal distance remains constant up to 160 °C and collapses to the original value at 200 °C, urea and the decomposition products are still present in the sample. Starting from 125 °C, urea decomposition products reduce halloysite structural Fe3+ centers to Fe2+, as indicated by DRUV–VIS and EPR spectroscopy.  相似文献   

11.
To obtain information on the potential of thermal conversion (pyrolysis) of municipal solid waste (MSW), a thermogravimetric study (TGA) is performed in a stream of nitrogen. Based on TGA results, pyrolysis experiments are carried out in a semi-batch reactor under inert nitrogen atmosphere. Slow pyrolysis is performed up to 550 °C (heating rate of 4 °C/min). Fast pyrolysis is performed at 450, 480, 510 and 550 °C and different input transfer rates (12 or 24 g material/min). The pyrolysis products are studied on composition and yield/distribution and investigated for their use as valuable product.The liquid obtained by slow pyrolysis separates spontaneously in a water rich product and an oily product. For all fast pyrolysis conditions, a viscous, brown oil which contains a poly(ethylene-co-propylene) wax is obtained. Composition analyses by GC/MS of the oil products (slow/fast pyrolysis) show that aliphatic hydrocarbons are the major compounds. The pyrolysis oils have high calorific value (between 35 and 44 MJ/kg), low wt% of water (around 6 wt%) and a low O/C value (between 0.2 and 0.3). The presence of waxy material is probably due to incomplete breakdown of poly(ethylene-co-propylene) present in MSW under study. The optimal pyrolysis conditions, regarding to oil yield, fuel properties, and wax yield is fast pyrolysis at 510 °C with 24 g material/min input transfer rate. The fast pyrolysis gases contain mainly hydrocarbons and have an averaged LHV around 20 MJ/Nm3. ICP-AES analyses of pyrolysis products reveal that almost none of the metals present in MSW are distributed within the liquid fractions.  相似文献   

12.
Reactive pyrolysis, under methylating or silylating conditions, in combination with gas chromatography-mass spectrometry (GC-MS) was evaluated as an analytical method for the detection of indigo dyes in painting layers. Samples with the addition of tetramethylammonium hydroxide (TMAH) or hexamethyldisilazane (HMDS), for pyrolysis/methylation and pyrolysis/silylation experiments, respectively, were pyrolysed at 600 °C by means of a heated filament pyrolyser and the evolved products were analysed on-line by GC-MS. Methyl and silylated pyrolytic markers, related to 2-aminobenzoic acid and the indoxyl moiety, were established from the analysis of synthetic indigo, neat or as a pigment of artificial painting layers containing a siccative oil. The occurrence of these markers was investigated in a real sample, taken from the painting The dinner of Emmaus by G.Preti (XVII century), in order to identify the blu pigment. Positive identification of indigo was achieved by pyrolysis/silylation and confirmed by RAMAN spectroscopy.  相似文献   

13.
The pyrolysis of chlorinated polybutadienes (CPB) was investigated by using a pyrolysis gas chromatograph. CPB corresponds to poly(vinyl chloride) (PVC) constructed with head–head and tail–tail linkages of the vinyl chloride unit. Benzene, toluene, ethyl-benzene, o-xylene, styrene, vinyltoluene, chlorobenzenes, naphthalene, and methylnaphthalenes were detected in the pyrolysis products from CPB above 300°C, and no hydrocarbons could be detected at 200°C. The pyrolysis products from CPB were similar to those from PVC and new products could not be detected. Lower aliphatics, toluene, ethylbenzene, o-xylene, chlorobenzenes, and methylnaphthalenes were released more easily from pyrolysis of CPB than from PVC; amounts of benzene, styrene, and naphthalene formed were small. These results support the conclusion that recombination of chlorine atoms with the double bonds in the polyene chain takes place and that scission of the main chain may depend on the location of methylene groups isolated along the polyene chain during the thermal decomposition of PVC.  相似文献   

14.
Thermal reactivities of lignin pyrolysis intermediates, catechols/pyrogallols (O-CH3 homolysis products) and cresols/xylenols (OCH3 rearrangement products), were studied in a closed ampoule reactor (N2/600 °C/40-600 s) to understand their roles in the secondary reactions step. Reactivity tends to be enhanced by increasing the number of substituent groups on phenol and this effect was greater for -OH than for -CH3. Thus, catechols/pyrogallols were more reactive than cresols/xylenols and syringol-derived products were more reactive than corresponding guaiacol-derived products. Catechols/pyrogallols were effectively converted into CO (additionally CO2 in the case of pyrogallols) in the early stage of pyrolysis. In contrast, cresols/xylenols were comparatively stable and produced H2, CH4 and demethylation products (cresols and phenol) after prolonged heating. All intermediates except phenol and 2-ethylphenol formed coke during a long heating time of 600 s (second stage coking). Based on the present results, the roles of intermediates in tar, coke and gas formation from guaiacol and syringol are discussed at the molecular level, focusing on their differences. Molecular mechanisms of gas formation from pyrogallols and demethylation of cresols/xylenols are also discussed.  相似文献   

15.
Flash vacuum pyrolysis of benzyl benzoate ( 3 ) at temperatures in the range 750–900 °C and at 102 torr gave diphcnylmethane ( 5 ) as the major product with toluene ( 6 ) and eight other trace products, namely bipbenyl ( 7 ), dibenzyl ( 8 ), 2-, 3-, 4-phenyltoluenes ( 9,10,11 , respectively), fluorcne ( 12 ), benzyl alcohol ( 4 ) and benzaldehyde ( 13 ). The mechanism of formation of these products is proposed to involve benzyl and phenyl radicals.  相似文献   

16.
The polymeric product spectrum generated in thioketone‐mediated free radical polymerization (TKMP) was analyzed via electrospray ionization mass spectrometry. Poly(n‐butyl acrylate) samples were synthesized in the presence of the (commercially available) thioketone 4,4‐bis(dimethylamino)thiobenzophenone under variable reaction conditions in toluene solution at 80 °C. To unambiguously assign the mass spectra, the samples are prepared under variation of the monomer (going from n‐butyl acrylate to ethyl acrylate) as well as by employing variable thermally decomposing initiators [i.e., 2,2′‐azoisobutyronitrile and azobis(cyclohexanecarbonitrile)]. In all mass spectra, significant amounts of the expected cross‐termination product, formed via bimolecular termination of propagating macroradicals with the dormant thioketone radical adduct (consisting of a propagating chain and the mediating thioketone) alongside conventional termination products can be identified. As the study was carried out on acrylate polymers, acrylate‐specific reaction products arising from intramolecular transfer reactions followed by β‐scission of the generated mid‐chain radicals are also identified in the mass spectra. In addition, a species congruent with the dormant thioketone radical adduct itself (oxidized to its cationic state) was identified. Products that could potentially be formed via a chain transfer mechanism cannot be identified. The results presented here thus support the earlier suggested TKMP mechanism involving a highly stabilized adduct radical which undergoes significant cross‐termination reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1864–1876, 2009  相似文献   

17.
烟草中β-胡萝卜素的热裂解产物的研究   总被引:22,自引:0,他引:22  
杨伟祖  谢刚  王保兴  侯英  杨勇  徐济仓  杨燕  王玉 《色谱》2006,24(6):611-614
为了研究烟草中β-胡萝卜素的高温裂解产物对卷烟抽吸品质的影响,利用热裂解气相色谱/质谱联用仪在不同裂解氛围(空气、氮气中含10%O2及N2)和不同温度(300,600和900 ℃)下对β-胡萝卜素进行裂解,裂解产物用固相微萃取装置进行吸附,然后将吸附到的裂解产物用气相色谱/质谱联用仪(GC/MS)进行分析。结果表明,β-胡萝卜素在不同裂解条件下主要的裂解产物是甲苯、对二甲苯、1,2,3,4-四氢-1,1,6-三甲基萘和2,7-二甲基萘等化合物,另外还生成异佛尔酮、β-环柠檬醛、β-紫罗兰酮、二氢猕猴桃内酯等香味化合物,这些物质随裂解温度和裂解氛围的不同其含量有所差异。  相似文献   

18.
The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane–surfactant–cerium nitrate system. The micelle and particle size in the range of 5–12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100–600 °C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6–16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 °C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles.  相似文献   

19.
Iridium and ruthenium, alone and in combination with tungsten, thermally deposited on the platform of a transversely heated graphite tube, were investigated for their suitability as permanent chemical modifiers for the determination of cadmium in coal slurries by electrothermal atomic absorption spectrometry (ET AAS). The conventional mixed palladium and magnesium nitrates (Pd–Mg) modifiers, added in solution, were also investigated for comparison. The latter one showed the best performance for aqueous solutions, and the mixed W–Ir and W–Ru permanent modifiers had the lowest stabilizing power. All of the investigated modifiers lost some of their stabilizing power when coal slurries were investigated. The Pd–Mg modifier, pure Ir and Ru, and a mixture of 300 μg W + 200 μg Ir could stabilize Cd at least to a pyrolysis temperature of 600 °C, whereas all the other combinations already failed at temperatures above 500–550 °C. Additional investigations of the supernatant liquid of the slurries supported the assumption that the high acid concentration of the slurries and/or a concomitant leaching out of the coal might be responsible for the reduced stabilizing power of the modifiers. The maximum applicable pyrolysis temperature of 600 °C was not sufficient to reduce the background absorption to a manageable level in the majority of the coal samples. High-resolution continuum source ET AAS revealed that the continuous background absorption was exceeding values of A = 2, and was overlapping with the analyte signal. Although the latter technique could correct for this background absorption, some analyte was apparently lost with the rapidly vaporizing matrix so that the method could not be considered to be rugged. A characteristic mass of 1.0 pg and a detection limit of 0.6 ng g− 1 could be obtained under these conditions.  相似文献   

20.
In the present study, conventional and multivariate methods were used to optimize conditions for direct determination of aluminum in soft drinks by electrothermal atomic absorption spectrometry. For the conventional method, the optimized experimental parameters were: pyrolysis and atomization temperatures and chemical modifier. A multivariate study was performed using factorial design and the optimized parameters were the same employed in the univariate method including pyrolysis time. For the conventional method, the optimal conditions obtained were: pyrolysis temperature of 1600 °C, atomization temperature of 2700 °C, and Zr as permanent modifier. For the factorial design in the multivariate optimization, the Pareto´s chart showed that the atomization temperature, the modifier, and the pyrolysis temperature presented a significant effect on the integrated absorbance and the interaction between pyrolysis temperature and pyrolysis time also had a significant effect on the signal. Better results were obtained using Zr as modifier. The surface response indicates that the lowest pyrolysis (1100 °C) and atomization temperatures (2350 °C) provide higher absorbance for aluminum in soft drinks. Characteristic mass of 23.4 and 19.4 pg and LOD of 17.9 and 11.3 μg L− 1 was obtained to conventional and multivariate methods, respectively. The calibration was accomplished with standard addition in a range of 60–200 μg L− 1 for conventional method and of 38–200 μg L− 1for multivariate method with R higher than 0.99 for both conditions. Recoveries in both studies were nearly 100% with adequate precision for GFAAS analysis. For the Al concentrations level found in soft drinks, both experimental conditions are adequate as good results were obtained in recovery studies. The Al concentrations in different soft drinks range from 147.9 to 599.5 μg L−1. Higher concentrations were found in soft drinks sold in Al cans than in PET bottles, indicating that contamination can occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号