首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱金荣  香妹  胡经国 《物理学报》2012,61(18):187504-187504
比较了铁磁单层膜与铁磁/反铁磁双层膜结构中的磁畴演化行为, 发现由于反铁磁层膜对铁磁层膜的耦合作用使得系统的磁畴壁厚度、 磁畴壁等效质量、磁畴壁移动速度等发生了改变, 系统的矫顽场增强, 并出现了交换偏置场. 文章具体研究了反铁磁层耦合作用下其磁畴壁厚度、 等效质量以及磁畴壁移动速度等与反铁磁层的净磁化、 磁各向异性、界面耦合强度以及温度等的关系; 并研究了其对铁磁/反铁磁双层膜中的交换偏置场、矫顽场的影响. 进而 从磁畴结构的形成及其演化上揭示了铁磁/反铁磁双 层膜中出现交换偏置以及矫顽场增加的物理机制.  相似文献   

2.
Chalcopyrite II-IV-V 2 semiconductors CdGeP 2 : Mn and ZnGeP 2 : Mn are new types of diluted magnetic semiconductors (DMSs). Since their ferromagnetic Curie temperatures are much higher than room temperature, these DMSs are good candidates for materials to be used in spintronics devices. Their electronic and magnetic structures have been investigated using the first-principles calculations based on the Korringa-Kohn-Rostoker coherent-potential-approximation and local-density-approximation (KKR-CPA-LDA) methods. When Cd or Zn atoms are substituted by Mn atoms, the ground state magnetic structure is spinglass-like. On the other hand, if Mn atoms substitute Ge atoms, the system becomes ferromagnetic through the double-exchange mechanism. However, the calculation of the formation energies shows that this system is not energetically favorable. Instead, the system with vacancies (Cd, Vc, Mn)GeP 2 or a non-stoichiometric (Cd, Ge, Mn)GeP 2 are also ferromagnetic and, moreover, energetically stable. We conclude that either of these variants possess a ferromagnetic phase of the kind CdGeP 2 : Mn. Similar conclusions are obtained for ZnGeP 2 : Mn.  相似文献   

3.
It is possible to determine the dimensions of the ferromagnetic correlation range by depolarisation measurements of polarized thermal neutrons near magnetic transition points, where small magnetic domains (< 10?4 cm) are present. The dimensions of the magnetic domains of Dy were determined in the temperature range from 4,2 °K to room temperature and in an external magnetic field from 0 to 2,4 kOe. The size of the domains increases with decreasing temperature and increasing external field. For low temperatures a sort of internal coercive force for the wall mobility was observed, which strongly hinders the formation of greater ferromagnetic domains. At the Curie-point the ferromagnetic correlation range shows a continuous transition and goes only slowly to zero when the temperature increases.  相似文献   

4.
This paper reports on the results of a theoretical investigation into the magnetic and resonance properties of thin films in the range of the transition from a paramagnetic state to a ferromagnetic state in the case where the magnetic transition is a first-order phase transformation. It is demonstrated that, in an external magnetic field directed perpendicular to the film plane, the formation of a specific domain structure consisting of domains of the coexisting paramagnetic and ferromagnetic phases can appear to be energetically favorable. The parameters of the equilibrium system of stripe phase domains and their dependences on the temperature, the magnetic field, and the characteristics of the material are calculated. The specific features of the magnetic resonance spectra under the conditions of formed stripe phase domains are considered. A relationship is derived for the dependence of the resonance field of the system of ferromagnetic domains on the magnetization and temperature. It is shown that the alternating external field can fulfill an orientation function in the formation of stripe phase domains.  相似文献   

5.
The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained.  相似文献   

6.
TL Mitran  A Nicolaev  GA Nemnes  L Ion  S Antohe 《J Phys Condens Matter》2012,24(32):326003, 1-326003, 7
Ab initio calculations are performed in the framework of density functional theory on Mn-doped boron nitride sheets, which are candidates for two-dimensional diluted magnetic semiconductors (DMSs). Each type of substitution reveals a qualitatively different magnetic behavior encompassing ferromagnetic, anti-ferromagnetic and spin glass ordering. The ability of formation of these defects is also discussed. We analyze the dependence of the exchange couplings on the distance between impurities and the typical range and distribution are extracted. Multiple-impurity configurations are considered and the results are mapped on an Ising-type Hamiltonian with higher order exchange interactions, revealing deviations from the standard two-spin models. The percolation of interacting magnetic moments is discussed and the critical concentration is determined for the underlying transition from a ferromagnetic to a super-paramagnetic state. We conclude our study by providing the optimal conditions for doping in order to obtain a ferromagnetic DMS.  相似文献   

7.
The formation process and magnetic properties of the distorted Laves phase compound (Fe2Nb) of the nominal composition Fe60Nb40 in its amorphous phase prepared by mechanical alloying have been investigated. The effect of milling time on the formation of amorphous phase has been studied using the X-ray diffraction technique. Further characterizations were carried out by particle size measurement, energy dispersive X-ray microanalysis (EDAX), dc magnetisation and ferromagnetic resonance (FMR) studies. Magnetisation measurement shows that the deviation from the stoichiometric composition in the Nb rich side enhances the compositional short range order and favours the moment formation responsible for weak ferromagnetic behaviour whereas ferromagnetic resonance spectra show some sort of disorder/strain introduced during the mechanical alloying process. The method of preparation also affects the magnetic behaviour of nominal composition Fe60Nb40.  相似文献   

8.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of N monodoping and (Li, N) codoping in ZnO. The results indicate that monodoping of N in ZnO favors a spin-polarized state with a magnetic moment of 0.95 μB per supercell and the magnetic moment mainly comes from the unpaired 2p electrons of N and O atoms. In addition, it was found that monodoping of N in ZnO is a weak ferromagnet and it is the spin-polarized O atoms that mediate the ferromagnetic exchange interaction between the two N atoms. Interestingly, by Li substitutional doping at the cation site (LiZn), the ferromagnetic stability can be increased significantly and the formation energy can be evidently reduced for the defective system. Therefore, we think that the enhancement of ferromagnetic stability should be attributed to the accessorial holes and the lower formation energy induced by LiZn doping.  相似文献   

9.
In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.  相似文献   

10.
Thin ferromagnetic films with the uniaxial magnetic anisotropy were synthesized by Co+ implantation into single-crystal silicon in the magnetic field. It was concluded that the formation of the induced magnetic anisotropy is due to the directional atomic pair ordering (Neel–Taniguchi model). The synthesized films were studied by the ferromagnetic resonance (FMR) method in the temperature range from 100 to 300 K. The FMR linewidth is almost independent of temperature, which is in agreement with the Raikher model describing the magnetic resonance of uniaxial magnetic particles. It is found that the temperature dependence of the anisotropy constant is linear. This dependence can be associated with the difference in the coefficients of thermal expansion of the Si (111) substrate and the ion-beam-synthesized cobalt silicide films.  相似文献   

11.
The magnetic properties of multilayer Gd/Si/Co magnetic films are experimentally studied by electron magnetic resonance and analyzed theoretically. The introduction of a semiconductor silicon interlayer is found to substantially affect the magnetic interlayer coupling and the magnetic dynamics of the system. The interlayer coupling is shown to be ferromagnetic for the (Gd/Si)n films and to be antiferromagnetic for the (Gd/Si/Co/Si)n films. The temperature dependences of the exchange parameters and the gyromagnetic ratios are determined. Possible mechanisms responsible for the formation of the interlayer coupling are discussed.  相似文献   

12.
In this note the Kim [1] non-degenerate Anderson model (NDAM) of random dilute alloys treatment of local moment and ferromagnetic state formation is generalized to the ten-fold degenerate Anderson model (TDAM) of Siegel and Kemeny [2], Siegel [3,4] and Moriya [12]. We first determine how an impurity state is modified by neighboring impurities. For a simple binary alloy the local electron state at each impurity site depends upon the local distribution of other impurities. Second we derive a TDAM general relationship for the occurrence of a local moment on one impurity and the ferromagnetic ordering of the total impurity spins. Lastly we derive the impurity-impurity TDAM magnetic interaction; for the direct transfer interaction the impurity-impurity magnetic interaction can be ferromagnetic or antiferromagnetic depending upon the fractional occupation of impurity states. At each stage we compare our results with those of Kim's NDAM treatment.  相似文献   

13.
Influences of crystal-fields(D_A and D_B) and interlayer coupling interactions(J_3) on dynamic magnetic critical behaviors of a mixed-spin(3/2, 2) bilayer system under an oscillating magnetic field are investigated by the Glauber-type stochastic dynamics based on the mean-field theory. For this purpose, dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane for the ferromagnetic/ferromagnetic(FM/FM),antiferromagnetic/ferromagnetic(AFM/FM) and AFM/AFM interactions in detail. We observe that the influences of D_A, D_B and J_3 interactions parameters on the behavior of the dynamic phase diagrams are very much.  相似文献   

14.
The new class of phenomena described in this review is based on the interaction between spatially separated, but closely located ferromagnets and superconductors, the so-called ferromagnet–superconductor hybrids (FSH). Typical FSH are: coupled uniform and textured ferromagnetic and superconducting films, magnetic dots over a superconducting film, magnetic nanowires in a superconducting matrix, etc. The interaction is provided by the magnetic field generated by magnetic textures and supercurrents. The magnetic flux from magnetic structures or topological defects can pin vortices or create them, changing the transport properties and transition temperature of the superconductor. On the other hand, the magnetic field from supercurrents (vortices) strongly interacts with the magnetic subsystem, leading to formation of coupled magnetic–superconducting topological defects.

The proximity of ferromagnetic layer dramatically changes the properties of the superconducting film. The exchange field in ferromagnets not only suppresses the Cooper-pair wavefunction, but also leads to its oscillations, which in turn leads to oscillations of observable values: the transition temperature and Josephson current. In particular, in the ground state of the Josephson junction the relative phase of two superconductors separated by a layer of ferromagnetic metal is equal to?π?instead of the usual zero (the so-called π-junction). Such a junction carries a spontaneous supercurrent and possesses other unusual properties. Theory predicts that rotation of magnetization transforms s-pairing into p-pairing. The latter is not suppressed by the exchange field and serves as a carrier of long-range interaction between superconductors.  相似文献   

15.
The formation of the Co/Si(110)16 × 2 interface and its magnetic properties are studied by high-energy-resolution photoelectron spectroscopy using synchrotron radiation and magnetic linear dichroism in the photoemission of core electrons. It is shown that a cobalt coating less than 7 Å thick deposited on the silicon surface at room temperature results in the formation of an ultrathin (1.7 Å) interfacial cobalt silicide layer and a layer of silicon-cobalt solid solution. The ferromagnetic ordering of the interface is observed at an evaporation dose corresponding to 6–7 Å in which case a cobalt metal film begins to grow on the solid solution layer. During 300°C-annealing of the sample covered by a nanometer-thick cobalt layer, the metal film gradually disappears and four silicide phases arise: metastable ferromagnetic silicide Co3Si and three stable nonmagnetic silicides (Co2Si, CoSi, and CoSi2).  相似文献   

16.
SiCN magnetic ceramics doped with Fe ions were synthesized at different pyrolysis temperatures in the range from 600 to 1600°C. Several phases of ceramics were detected using the techniques of electron paramagnetic resonance/ferromagnetic resonance, Raman, Fourier-transform infrared and X-ray diffractometry, listed as follows: (a) transformation to the ceramic state from the polymer state, where the Fe ions are in the paramagnetic state, as the temperature is increased from 600 to 800°C; (b) formation of two different Fe species in the range of 950–1150°C: nanocrystalline particles in the ferromagnetic state and Fe ions incorporated into the free-carbon state in the superparamagnetic state; (c) diminution of the free-carbon content above 1150°C, and, as a consequence, diminution of the intensity of the broad Fe signal related to this phase; (d) appearance of a new Fe phase at about 1200°C; (e) disappearance of the ferromagnetic phase at about 1400°C; (f) disappearance of all Fe ions above 1530°C. The samples exhibiting superparamagnetic behavior are potentially useful in developing high-temperature magnetic sensor devices.  相似文献   

17.
The general effective-medium dispersion relations are derived for surface-localized magnetic polaritons which propagate parallel to the surface between a superlattice and semi-infinite bulk material, as applied to ferromagnetic and antiferromagnetic superlattices, in the situation when a static magnetic field is applied in the plane of the layers and parallel to the magnetization. The dependence of the energy of the surface waves on the volume fraction of the ferromagnetic superlattice component and the influence of the external magnetic field on the spectrum of the surface magnetic polaritons for the antiferromagnetic superlattice are investigated. The spectrum of the surface-localized magnetic polaritons which appear at the junction of the magnetic (ferromagnetic and antiferromagnetic) superlattice with the magnetic material are more complex, in contrast to the cases of semi-infinite magnetic material or semi-infinite magnetic SL. It is essential that in all cases in the presence of the external magnetic field the spectrum of the magnetic polaritons are non-reciprocal. The properties of surface polaritons are discussed in detail for the system ferromagnetic superlattice (YIG/non magnet)/YAG and the antiferromagnetic superlattice (MnF2/ZnF2)/FeF2.  相似文献   

18.
The crystal structure and magnetic properties of the Nd(Mn?xCrx)O3 system (x≤0.85) have been studied. Substitution of chromium for manganese was shown to induce a transition from the antiferromagnetic to ferromagnetic state (x≈0.2) and a decrease in the critical temperature followed, conversely, by an increase in the Néel temperature and decay of spontaneous magnetization. At low temperatures, the magnetization was found to behave anomalously as a result of magnetic interaction between the ferromagnetic and antiferromagnetic phases. The formation of the ferromagnetic phase is attributed to destruction of cooperative static orbital ordering, while the coexistence of different magnetic phases is most probably due to internal chemical inhomogeneity of the solid solutions.  相似文献   

19.
The influence of the insertion of an ultrathin NiO layer between the MgO barrier and the ferromagnetic electrodes in magnetic tunnel junctions has been investigated from measurements of the tunneling magnetoresistance and via x-ray magnetic circular dichroism (XMCD). The magnetoresistance shows a high asymmetry with respect to bias voltage, giving rise to a negative value of up to -16% at 2.8 K. We attribute this effect to the formation of noncollinear spin structures at the interface of the NiO layer as inferred from XMCD measurements. The magnetic moments of the interface Ni atoms tilt from their easy axis due to exchange coupling with the neighboring ferromagnetic electrode, and the tilting angle decreases with increasing NiO thickness. The experimental observations are further supported by noncollinear spin density functional calculations.  相似文献   

20.
We investigated remagnetization processes in ferromagnetic nanoparticles under inhomogeneous magnetic field induced by the tip of magnetic force microscope (MFM) in both theoretical and empirical ways. Systematic MFM observations were carried out on arrays of submicron-sized elliptical ferromagnetic particles of Co and FeCr with different sizes and periods. It clearly reveals the distribution of remanent magnetization and processes of local remagnetization of individual ferromagnetic particles. Modeling of remagnetization processes in ferromagnetic nanoparticles under magnetic field induced by MFM probe was performed on the base of Landau–Lifshitz–Gilbert equation for magnetization. MFM-induced inhomogeneous magnetic field is very effective to control the magnetic state of individual ferromagnetic nanoparticles as well as to create different distribution of magnetic field in array of ferromagnetic nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号