首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A simple interface has been developed to couple capillary electrophoresis (CE) to inductively coupled plasma atomic emission spectrometry (ICP-AES) for metal speciation. A concentric glass nebulizer with elongated tip is used as the CE-ICP interface. The CE capillary is the central tube of the nebulizer. A platinum wire is wrapped across the exit end of the CE capillary to provide electrical connection to the CE power supply. No sheath flow of buffer solution is needed. A simple cooling system has also been developed. A peristaltic pump circulates water through a plastic tube that encloses the section of the CE capillary between the CE instrument and the ICP spectrometer. Characteristics of the CE-ICP interface, e.g., elution time, nebulization and transport efficiency and peak broadening, versus carrier gas flow-rate have been studied. Comparisons to a previous design with the Pt electrode inserted into the end of the CE capillary are made where appropriate. The reproducibility (RSD) in ICP emission intensity of the system is <4%. Detection limits of Cr and Cu are approximately 5 ng/ml.  相似文献   

2.
A capillary chromatography system was developed using an open capillary tube and a ternary solvents carrier solution of water-hydrophilic/hydrophobic organic solvent mixture. The chromatography is called a tube radial distribution chromatography (TRDC) system. The TRDC system works without applying high voltages or using specific columns, such as monolithic and packed columns. In this study, the effects of tube materials on separation performance were examined in the TRDC system, by using poly(tetrafluoroethylene) (PTFE; 100–400?μm inner diameter), polyethylene (PE; 200?μm inner diameter), and copolymer of (tetrafluoroethylene–perfluoroalcoxyethylene) (PTFE–PFAE; 100?μm inner diameter) capillary tubes. An analyte solution of 2,6-naphthalenedisulfonic acid and 1-naphthol as a model was subjected to the system with a water–acetonitrile–ethyl acetate carrier solution; 15:3:2 volume ratio (water-rich carrier) and 3:8:4 volume ratio (organic solvent-rich carrier). The flow rates were adjusted to be 0.5?μL?min?1 for PTFE and PTFE–PFAE tubes as well as 2.0?μL?min?1 for PE tube under laminar flow conditions. These analytes in the solution were separated in this order with the water-rich carrier solution with baseline separation in the three capillary tubes, while they were eluted in the reverse order or not separated with the organic solvent-rich carrier solution. The effects of tube temperature on separation were also examined with the water-rich carrier solution; the best resolutions were observed at 0?°C of the tube temperature. The obtained results were compared with those of fused-silica capillary tube and discussed.  相似文献   

3.
Cheng H  Yin X  Xu Z  Wang X  Shen H 《Talanta》2011,85(1):794-799
A simple and demountable capillary microflow nebulizer (d-CMN) was developed for inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a nebulizer body, a fused-silica capillary with a tapered tip and a polytetrafluoroethylene (PTFE) adapter. The gas orifice i.d., the solution capillary tip i.d. and its wall thickness were 200, 30, and 5 μm, respectively. The sensitivities, detection limits, precisions and the long-term stability with the d-CMN were evaluated. The experimental results indicated that its performances at low uptake rates were similar or better than those obtained with the conventional concentric nebulizer at 820 μL/min and the micromist nebulizer at 200 μL/min. The demountable construction of the d-CMN permitted that the blocked or broken solution capillary could be conveniently renewed. The low self-aspiration rate (4.77 μL/min) and the analytical characteristics comparable to commercial microflow nebulizers made the d-CMN a good choice for coupling capillary electrophoresis and microbore high-performance liquid chromatograph to ICP-MS. The proposed d-CMN was successfully applied in the iodine speciation by coupling microchip capillary electrophoresis (MCE) to ICP-MS. The absolute detection limits for iodide and iodate of 0.20 and 0.29 fg were achieved with satisfactory resolution.  相似文献   

4.
A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5′ deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.  相似文献   

5.
A home-made system hyphenating capillary electrophoresis with an inductively coupled plasma mass spectrometer (CE-ICP-MS) for cadmium speciation of protein-binding and free cadmium ions in solution is presented. The CE-ICP-MS interface consisted of an acrylic block with an internal volume ca. 20 microL in which a platinum electrode, a capillary column, and a connection to an ICP nebulizer were inserted. A make-up electrolyte solution containing 50 mmol L(-1) Tris-HCl buffer solution (pH 9.0) was continuously flowed through the interface to the ICP nebulizer. The separation of free Cd ions, Cd-cysteine, and Cd bounded to metallothionein (MT) isoforms from rabbit liver was carried out by capillary electrophoresis, and the analytes were detected by ICP-MS. The feasibility to isolate metallothionein compounds extracted from the cyanobacterium Synechococcus PCC7942 was demonstrated. The Cd binding proteins were induced in Synechococcus PCC7942 and further analyzed by CE ICP-MS.  相似文献   

6.
An ordering effect of uniaxially aligned poly(tetrafluoroethylene) (PTFE) substrates prepared by rubbing on polyaniline (PANI) molecules at the interfaces of PTFE/PANI film and PTFE/PANI solution has been investigated using electronic absorption spectroscopy. It was observed slight dichroism in electronic spectra from only very thin (thickness approximately 20 nm and less) PANI films as well as from PANI solutions of capillary thickness (10 to 30 microm) confined by oriented PTFE surfaces. The ordering effect is discussed in terms of a hydrodynamic flow arising upon sample formation and steric factors at the PTFE surface, which cause uniaxial deformation of the polymer coil on the rubbed PTFE surface.  相似文献   

7.
A microchip-based capillary electrophoresis (μCE) system was interfaced with a microwave induced plasma optical emission spectrometry (MIP-OES) to provide copper species separation capabilities. This system uses an extremely low flow demountable direct injection high efficiency nebulizer (D-DIHEN) sited directly at the liquid exit of the chip. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. A small evaporation chamber has been incorporated into the interface in order to prevent the losses associated with traditional spray chambers, allowing the entire aerosol sample to enter the plasma. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Sample volumes of 25 nL can be analyzed. With application of an electric field up to 500 V cm−1, species such as Cu(II) and Cu(EDTA)2− were separated in acidic solution within 90 s using a 26 mm long separation channel etched in a glass base. Resolution of the Cu(II) and Cu(EDTA)2− peaks was 1.1 using the chip-based μCE-MIP-OES system.   相似文献   

8.
An atmospheric pressure microwave induced plasma ionization (AP-MIPI) source design for molecular analysis is presented. It consists of three sections: the torch, the microwave cavity, and the vacuum interface. The torch uses an oscillating capillary nebulizer for introduction of aqueous solutions into the afterglow of the MIP. Samples introduced into the afterglow of the plasma are ionized by protonated solvent molecules in a fashion similar to the chemical ionization process. The ions are then transported into the mass spectrometer using a heated capillary tube. The combination of an improved torch design and the heated capillary tube provides a stable ionization source for direct aqueous solution introduction with flow rates of up to 0.5 mL/min. The system works well with solvent compositions similar to those used in high performance liquid chromatography. For most samples studied, the protonated molecules were the base peaks of the mass spectra. A linear dynamic range of at least two orders of magnitude and an upper limit of quantitation of 5 ng were observed for alanine. The technique was shown to maintain reproducibility and moderate loss of sensitivity (33% reduction) when an amino acid solution containing a sodium phosphate buffer was analyzed. The optimization of experimental parameters with respect to the torch and vacuum interface is discussed.  相似文献   

9.
提出用已二酰二氯作交联剂,聚乙烯醇(PVA)涂层改性聚四氟乙烯(PTFE)膜质毛细管,并用于多酚氧化酶(PPO)的固定,在线分析过程采用流动注射系统。这种经修饰的PTFE膜质毛细管可催化水溶液中酚的氧化,氧化产物与染料4-氨基安替比林偶合生成的有色化合物再经未涂层的PTFE膜质毛细管循环15 min分离富集,用乙醇洗脱后进入流通池在510 nm波长处进行在线检测。对在线酶催化反应和显色反应的时间,试验进入反应圈1及2时的流速,淋洗时,淋洗液的流速等均给了最佳参数。反应系在pH 6.8的磷酸盐缓冲介质中进行。该方法的线性范围为0.5~60μg·L~(-1),水样中常见的离子和化合物不干扰酚的测定。应用此法分析了地下水及自来水样中痕量酚,所得结果与国标标准方法所得结果之间的相对误差在1.8%~3.3%范围内。  相似文献   

10.
A modified concentric nebulizer was used as the interface to couple capillary electrophoresis (CE) to inductively coupled plasma atomic emission spectrometry (ICP-AES). The CE capillary replaces the central tube of the concentric nebulizer. The tip of the nebulizer tapers slowly to allow uncertainty in the position of the capillary. A platinum wire was inserted into the CE capillary to provide electrical connection to the CE power supply. pH changes inside the capillary due to electrolysis of the background buffer electrolyte was small and has minimal effects on the CE separation. The peak broadening effects due to the nebulizing gas flow, however, were significant. Resolution decreases quickly when the flow-rate of the carrier gas increases. Sample stacking technique was used to improve the resolution of species of opposite charge, e.g., Cr(VI) vs. Cr(III) ions. Detection limit of Cr based on peak area is approximately 10 ppb for the CE-ICP-AES system.  相似文献   

11.
Metabolomics is an emerging field in analytical biochemistry, and the development of such a method for comprehensive and quantitative analysis of organic acids, carbohydrates, and nucleotides is a necessity in the era of functional genomics. When a concentrated yeast extract was analyzed by CE-MS using a successive multiple ionic-polymer layer (SMIL)-coated capillary, the adsorption of the contaminants on the capillary wall caused severe problems such as no elution, band-broadening, and asymmetric peaks. Therefore, an analytical method for the analysis of anionic metabolites in yeast was developed by pressure-assisted CE using an inert polymer capillary made from poly(ether etherketone) (PEEK) and PTFE. We preferred to use the PEEK over the PTFE capillary in CE-MS due to the easy-to-use PEEK capillary and its high durability. The separation of anionic metabolites was successfully achieved with ammonium hydrogencarbonate/formate buffer (pH 6.0) as the electrolyte solution. The use of 2-propanol washing after every electrophoresis run not only eliminated wall-adsorption phenomena, but allowed for good repeatability to be obtained for migration times in the metabolomic analysis.  相似文献   

12.
A polytetrafluoroethylene(PTFE) capillary Ubbelohde viscometer was designed and constructed. The relative viscosities of aqueous solutions of a polyethylene oxide and a polyvinylpyrrolidone sample were carefully determined down to an extremely dilute concentration region. In comparison with the data obtained from the common glass capillary viscometer, slippage is believed to occur in the PTFE capillary due to its hydrophobic nature. While for the glass capillary viscometer, conventional viscous flow is operative and adsorption phenomena occur since both the solvent water and aqueous solution are wet and/or adsorbed onto the glass capillary surface due to the existence of hydroxyl groups on glass surface. The data were analyzed with a recently developed wall-effect theory and satisfactory results were obtained.  相似文献   

13.
A derivatization system coupled to capillary electrophoresis for the determination of amino acids using 1,2-naphthoquinone-4-sulfonate as a labeling agent is described. In this system, amino acids are derivatized on-line in a three-channel flow manifold for sample, reagent and buffer solutions. The reaction takes place in a PTFE coil heated at 80 degrees C. The resulting solution, which contains the amino acid derivatives, is introduced into the electrophoretic system by means of an appropriate interface. Subsequently, amino acid derivatives are separated at 25 kV using a 40 mM sodium tetraborate aqueous solution with 30% (v/v) isopropanol solution as a running buffer. The electropherograms are monitored spectrophotometrically at 230 nm. The method has been applied to the determination of amino acids in feed samples and pharmaceutical preparations. A good concordance of the predicted values with those given by a standard amino acid analyzer is shown.  相似文献   

14.
The optimization of the hyphenation between capillary zone electrophoresis (CZE) and inductively coupled plasma mass spectrometry (ICP-MS) was studied for the simultaneous determination of metalloid species in the environment. Arsenic (arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid), selenium (selenite, selenate, selenomethionine, selenocystine), antimony (antimonate) and tellurium (tellurite, tellurate) species were simultaneously separated using a 75-μm i.d. fused silica capillary using either a chromate or a phosphate electrolyte. Different nebulizers were tested for introduction in the detector. A V-groove nebulizer (the Babington) and two concentric micronebulizers (the MCN-100 and the MicroMist) were studied in order to improve resolution, sensitivity and reproducibility. The optimization of CE-ICP-MS interface operating parameters is discussed for each nebulizer–interface combination, and special attention is given to the position of the capillary inside the nebulizer. Different nebulizer gas and liquid sheath flow rates were studied in detail and they hardly affect electrophoretic resolution and peak width. The best analytical performance characteristics were obtained with the MicroMist nebulizer. Detection limits with this nebulizer were found to range between 6 and 58 μg l−1 depending on the species investigated using pressure injection and below 1 μg l−1 for most of the species with electromigrative injection. Analysis of soil extracts showed that it was possible to carry out this technique on real samples.  相似文献   

15.
The potential of capillaries noncovalently coated with a bilayer of oppositely charged polymers for the analysis of peptides by CE-MS was investigated. Bilayer coatings were produced by subsequently rinsing fused-silica capillaries with a solution of Polybrene (PB) and poly(vinyl sulfonate) (PVS). The PB-PVS coating showed to be fully compatible with MS detection causing no ionization suppression or background signals. The bilayer coating provided a considerable EOF at low pH, thereby facilitating the fast separation of peptides using a BGE of formic acid (pH 2.5). Under optimized CE-MS conditions, for enkephalin peptides high separation efficiencies were obtained with plate numbers in the range of 300,000-500,000. It is demonstrated that both the cancellation of the hydrodynamic capillary flow induced by the nebulizer gas and a sufficiently high-data acquisition rate are crucial for achieving these efficiencies. The overall performance of the CE-MS system using PB-PVS-coated capillaries was evaluated by the analysis of a tryptic digest of cytochrome c. The system provided an efficient separation of the peptide mixture, which could be effectively monitored by MS/MS detection allowing identification of at least 13 peptides within a time interval of 1.5 min. In addition, the PB-PVS coating proved to be very consistent yielding stable CE-MS patterns with highly favorable migration time reproducibilities (RSDs < 1% over a 3-day period).  相似文献   

16.
A PTFE Babingtonnebulizer equipped with a hood was investigated for inductively coupled plasma atomicemission spectrometry in conjunction with a PTFE cyclone chamber, in order to nebulize various sample solutions containing high salts, hydrofluoric acid and/or suspended solid. A hood of 3 mmphi (nozzle side) - 5 mmphi (outlet side) and 6 mm in length gave a comparable or higher sensitivity compared to a system with a commercially available concentric nebulizer and a glass cyclone chamber. Moreover, the present nebulizer was fully interchangeable with a concentric one at normal argon pressure, attaining sufficient stability, a short wash-out time and good nebulizing of high matrices solutions. The present system was successfully applied to the determination of trace impurities in highly pure silica powders.  相似文献   

17.
制备了均匀稳定的聚丙烯酰胺涂层毛细管,有效抑制了毛细管内壁对金属硫蛋白(MT)的吸附,大大提高了MT的分离度和分离重现性。基于此,建立了大体积样品堆积-毛细管电泳-紫外检测法(LVSS-CE-UV)分析鼠肝中MT的新方法。在最优化的条件下,该方法对两种MT亚型(MT-1/2)的富集倍数分别为13、11倍,检出限分别为0.80、1.01μg·m L~(-1)。将所建立的LVSS-CE-UV方法用于经Cd~(2+)、Zn~(2+)诱导的Sprague Dawley大鼠肝脏中MT-1/2的定量分析,结果表明经Cd~(2+)、Zn~(2+)诱导的鼠肝内均检测出MT-1/2。其中,经Zn~(2+)诱导的鼠肝内MT-1与MT-2的含量分别为31.9、24.3μg·g~(-1);Cd~(2+)诱导组的MT-1与MT-2分别为15.9、31.2μg·g~(-1)。  相似文献   

18.
Poly(tetrafluoroethylene) (PTFE) is a material widely known for its inertness and excellent electrical properties. It is also transparent in the UV region and has a reasonable thermal conductivity. These properties make PTFE a suitable material for the separation capillary in capillary electrophoresis. Differences in the chemistry of the capillary wall compared to fused silica (FS) can make PTFE an interesting alternative to FS for some special applications. In this work, properties of a commercial PTFE capillary of approx. 100 microm i.d. were investigated, including the dependence of electroosmotic flow (EOF) on pH for unmodified and dynamically modified PTFE, optical properties, and practical aspects of use. The main problems encountered for the particular PTFE capillary used in this study were that it was mechanically too soft for routine usage and the crystallinity of the PTFE caused light scattering, leading to high background absorbance values in the low UV region. The profile of the EOF versus pH for bare PTFE surprisingly showed significantly negative EOF values at pH < 4.2, with an EOF of -30 x 10(-9) m2 V(-1) s(-1) being observed at pH 2.5. This is likely to be caused by either impurities or additives of basic character in the PTFE, so that after their protonation at acidic pH they establish a positive charge on the capillary wall and create a negative EOF. A stable cationic semi-permanent coating of poly(diallyldimethylammonium chloride) (PDDAC) could be established on the PTFE capillary and led to very similar magnitudes of EOF to those observed with FS. A hexadecanesulfonate coating produced a cathodic EOF of extremely high magnitude ranging between +90 and +110 x 10(-9) m2 s(-1) V(-1), which are values high enough to allow counter-EOF separation of high mobility inorganic anions. In addition, pH-independent micellar electrokinetic capillary chromatography (MEKC) separations could be easily realised due to hydrophobic adsorption of sodium dodecylsulfate (used to form the micelles) on the wall of the PTFE capillary. The use of polymers that would be mechanically more robust and optically transparent in the low-UV region should make such CE capillaries an interesting alternative to fused silica.  相似文献   

19.
Lin SY  Wang GR  Huang QP  Liu CY 《Electrophoresis》2006,27(21):4257-4265
We introduce a T-type interface and a crossflow nebulizer to find ways to combine CEC with inductively coupled plasma MS (ICP-MS) detection for selenium speciation. For CEC separation, we employed a macrocyclic polyamine-bonded phase capillary as the separation column and a bare fused-silica capillary filled with the make-up liquid (0.05 M HNO3). The effect of nebulizer gas flow rate, make-up liquid flow, type, concentration and pH of the mobile phase on the separation have been studied. Tris buffer of 50 mM at pH 8.50 gave the best performance for selenium speciation. The reproducibility of the retention time indicated that sample injection by electrokinetic and nebulizer gas flow was better than that by self-aspiration alone. The detection limits for selenate, selenite, selenocystine and selenomethionine were found to be 2.40, 3.53, 12.86 and 11.25 ng/mL, respectively. Due to the high sensitivity and element-specific detection, as well as the high selectivity of the bonded phase, quantitative analysis of selenium speciation in urine was also achieved.  相似文献   

20.
研究了聚四氟乙烯(PTFE)胶粒与NaCl混合液滴的蒸发过程及其图案形成机理. 结果表明, PTFE颗粒对接触线具有强烈的钉扎作用, 胶体液滴蒸发伴有显著的“咖啡环”效应. 由于液滴中心液相区表面张力法向分力的作用, 使得凝胶区存在辐射状应力, 进而产生从液滴边缘向中心的辐射状裂纹, 裂纹数量随胶粒的体积分数增大而减少. NaCl与PTFE胶粒的混合液滴出现了复杂多样的蒸发图案. 盐的加入抑制了向外的毛细补偿流, 从而有利于获得宏观上厚度均匀的沉积膜. NaCl与PTFE胶粒耦合形成了凹凸不平的枝晶状形貌, 这可能是释放蒸发应力的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号