首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of skin diseases with the combination of 8-methoxypsoralen and ultraviolet A radiation (PUVA) results in clinical alterations in treated skin that resemble those observed in chronically photodamaged skin. The PUVA-treated patients develop nonmelanoma skin cancers, pigmentary alterations and wrinkling characteristic of sun-induced changes. The major alteration in the dermis of sun-damaged skin is the deposition of abnormal elastic fibers, termed solar elastosis. Up-regulation of elastin promoter activity in dermal fibroblasts explains the excess elastic tissue but not the reason for the aberrant morphology of the elastotic material. In order to study photoaging in an experimental system, we utilized a transgenic mouse line that expresses the human elastin promoter/chloramphenicol acetyltransferase construct in a tissue-specific and developmentally regulated manner. Although UVB radiation has been demonstrated to increase promoter activity in vitro, UVA fails to demonstrate a similar effect at the doses utilized. In this study, we demonstrate the ability of PUVA treatment to up-re-gulate elastin promoter activity both in vitro and in vivo. These data help to explain the development of photoaging in sun-protected PUVA-treated skin. We attribute the up-regulation of elastin promoter activity in response to PUVA to the formation of DNA photoadducts, which do not occur in response to UVA radiation alone.  相似文献   

2.
The modifications induced in hairless mouse skin by chronic UV irradiation were investigated. Skin explant cultures were used to study UVA- and UVB-induced changes occurring in interstitial collagen (type I and type III) and fibronectin biosynthesis. To study the long-term effects, albino hairless mice were irradiated with UVA radiation alone from two sources with different spectral qualities or with UVB. UVA and UVB radiation produced a significant increase in the ratio of type III to type I collagen (more than 100% for UVA-irradiated skin and about 60% for UVB-irradiated skin) accompanied by a significantly increased fibronectin biosynthesis (50% or more in all irradiated groups). Irradiation with either UVA or UVB alone had no significant effect on the total collagen synthesis and resulted in only a slight decrease in the total collagen content of the skin determined as hydroxyproline. This decrease was significant only in the case of the group irradiated with UVA (xenon) (decrease of 25%, expressed as micrograms of hydroxyproline per milligram wet weight). A significant decrease in collagen hydroxylation (expressed as radioactive hydroxyproline/radioactive hydroxyproline plus proline in neosynthesized collagen) was observed of about 50% in skin irradiated with UVA (xenon) but not in UVB-treated skin. Several of the above modifications (increased fibronectin biosynthesis, increased collagen type III to type I ratio) correspond to the modifications observed during the aging of non-irradiated hairless mice. Therefore it appears that UV irradiation accelerates the modifications of extracellular matrix biosynthesis observed during aging.  相似文献   

3.
Chronic exposure to solar UV radiation causes marked changes in the dermal extracellular matrix that underlie the loss of resiliency and increased laxity observed in photoaged skin. In particular, the dermal elastin content increases substantially and the normal, well-organized elastic fibers are replaced by amorphous elastotic material. Transforming growth factor-β1 (TGF-β1) stimulates synthesis of elastin by dermal fibroblasts and may mediate the increase in elastin in chronically photodamaged skin. We investigated pathways involved in the TGF–β1-induced increase in tropoelastin (TE), the soluble elastin monomer and assessed the role of reactive oxygen species (ROS) in the regulation of TE mRNA. Antioxidants and an inhibitor of NADPH oxidase blocked TGF–β1-induced TE mRNA increase even when added 1.5 h after TGF-β1, although ROS were detected for only 30 min. The TE mRNA increase required activation of Smad4, shown using Smad4 siRNA, and also involved the ERK1/2, p38 and JNK MAP kinases but not PI3K. ROS did not enhance signaling through Smad2 but did enhance activation of p38 and ERK1/2 at 10 min after TGF-β1. These results indicate that Smad and MAPK pathways mediate TGF–β1-induced TE expression and that ROS are required for both early signal transduction and later steps that increase elastin.  相似文献   

4.
The iodine thyroid content of 57 relatively healthy men and women 14–60 years old was studied using instrumental neutron activation analysis. Two methods were used: analysis of whole glands and the analysis of lyophilized samples weighing 50 mg each. Very good agreement between results was obtained. It was shown that the total iodine content, concentration and weight did not depend on age and sex. The typical mean thyroid parameters were found for healthy people of non-endemically goitrous regions where iodated food is not eaten. Average thyroid weight was 14.2g, iodine concentration was 350 g/g of wet weight and thus total iodine content was 5 mg.  相似文献   

5.
Abstract— The effect of UVB exposure on the distribution and synthesis of dermal proteoglycans was measured in the skin of hairless mice. Two groups of mice were included: one was irradiated for 10 weeks; the other was kept as control. After intraperitoneal injection of sodium 35S-sulfate, punch biopsies were taken for histology and proteoglycans were extracted from the remaining skin with 4 M guanidinium chloride, containing 3–[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (0.5%, weight per volume). Following proteolytic digestion, the glycosaminoglycan constituents were isolated and analyzed by quantitative cellulose acetate electrophoresis and enzymatic digestibility.
Under the influence of UVB radiation, newly synthesized proteoglycans measured by 35SO4 uptake increased as much as 60%. In addition, the irradiated skin had a higher average content of proteoglycan than had control skin (4981 μg vs 4134 μg/g dry weight). This could be ascribed to an increase in heparin (1400 vs 533 μ g/g dry weight) and heparan sulfate (472 vs 367 μg/g dry weight), whereas no change in the concentration of hyaluronic acid (1243 vs 1372 μg/g dry weight) and dermatan sulfate (1866 vs 1863 μg/g dry weight) was observed. The irradiated animals also exhibited a marked increase in the synthesis of heparan sulfate and heparin (62% and 71%, respectively). These results demonstrate that chronic doses of UVB altered proteoglycan metabolism through both quantitative and qualitative changes.  相似文献   

6.
Skin is the most important organ in our body, as it protects us from external environmental effects. Study the ability of the skin to stretch and the histological examinations of irradiated tissues have significant values in scientific and medical applications. Only a few studies have been done to study the correlation between epidermis ablation and the changes that occur at dermal levels when using dual lasers in ablative resurfacing mode. The aim of this work is to determine this correlation and to estimate the effects of multiple pulses on induced collagen remodeling and the strength of skin exposed with dual lasers in an in vivo rat model. All laser exposures led to mark improvement in the skin's strength compared to their own controls. The histological investigation indicated that there was a thickness loss in the epidermis layer with the induction of deep collagen coagulation in the dermis layer as the dual laser pulses increased. Additionally, more collagen fibers were remolded in the treated samples by dual wavelengths. We conclude that by combining dual lasers with multiple pulses targeted at not only the epidermis layer of the skin, it could also induce some heat diffusion in the dermis layer which causes more coagulation of collagen fibers. The tensile results confirmed by our histological data demonstrate that the strength of irradiated skin with dual wavelengths increased more than using both lasers separately on the skin tissue since more collagen is induced.  相似文献   

7.
Ultraviolet-induced alterations of skin were investigated in a murine animal model. Groups of hairless mice were exposed to UV (black light, lambda max 352 nm; UV distribution: 300-310 nm, 0.9%; 310-320 nm, 2.0%; 320-420 nm, 97.1%) for 20 weeks at a dose of 16.3 J/cm2 five times weekly on weekdays. At the end of 20 weeks irradiation, the dorsal skins were biochemically and histologically examined. Ultraviolet caused remarkable increases in amounts of hyaluronan, chondroitin sulfates and dermatan sulfates in skin (microgram/cm2). Interestingly, a significant change in a collagen content (hydroxyproline, microgram/g of dry powder) caused by UV irradiation was not observed, whereas the amount of collagen (hydroxyproline, microgram/cm2) increased remarkably. Histologically, no distinguishable thickening was observed in both upper dermis and lower dermis, but thickening of the epidermis was observed. Furthermore, the histological study indicated that UV irradiation caused a disappearance of crowds of adipocytes, alternative appearance of numerous fibroblasts and accumulation of collagen bundles and hyaluronan in lower dermis. Hydrocortisone, an anti-inflammatory agent, prevented both the fibrosis of lower dermis and the accumulation of the extracellular matrix components. Based on these results, it seems reasonable that UV penetrates into the lower dermis and causes fibrosis there, resulting from the inflammatory responses.  相似文献   

8.
Quantitative and qualitative changes in dermal collagen and elastin occur in response to chronic ultraviolet (UV) irradiation. These changes have been implicated in the genesis of the wrinkling seen in chronically irradiated, or photoaged skin. We examined the relationship between wrinkle formation and changes in dermal structural protein content and type. Skh-1 hairless mice were irradiated with suberythemal doses of UV-B three times a week for up to 20 wk. Visible wrinkling was present after 6-7 wk of irradiation. Dermal elastic fiber content was quantified by color image analysis of paraffin-embedded tissue. There was no significant difference in dermal elastic fiber content between irradiated and age-matched control mice after either 10 or 20 wk of irradiation. The effect of UV-B irradiation on total dermal collagen content, ratio of collagen type III-type I, and extent of glycosylation and crosslinking of collagen was no different in irradiated and age-matched control mice after 10 wk of irradiation. Increased epidermal thickness was evident in frozen sections after 6 wk of irradiation, and the thickness increased with continued irradiation. Dermal thickening was evident after 10 wk of irradiation. Sufficient UV-B irradiation will eventually cause changes in dermal elastin and collagen content; however, wrinkle formation precedes such changes. A causal relationship between wrinkle formation and dermal structural protein content changes in Skh-1 hairless mice could not be established in this study.  相似文献   

9.
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.  相似文献   

10.
Summary A total diet reference material (RM) was prepared by employing material leftover from a nationwide Finnish hospital diet study. The material was carefully homogenized using Ti-blades, freeze-dried, rehomogenized with Ti-blades, passed through a 2 mm nylon sieve and carefully mixed in large glass cylinders. Homogeneity of the material divided into 20 g samples in polyethylene bottles was tested by taking ten 0.5 g samples from the beginning and end of the bottling line and analyzing them for Zn and Mg. The homogeneity was within 1.0% for both Zn and Mg. An interlaboratory comparison study involving reliable reference laboratories that employed a total of seven methods based on independent analytical principles was conducted on the contents of 14 mineral elements. After the exclusion of outliers the recommended concentrations (on a dry weight basis) expressed as the medians±95% confidence limits were established as follows: Ca=2.86±0.124 mg/g, Mg=785±25 g/g, K=9.42±0.30 mg/g, Na=7.87±0.57 mg/g, Fe=30.4±0.9 g/g, Mn=12.9±0.58 g/g, Zn=28.9±1.3 g/g, Cu=3.18±0.19 g/g, Mo=262±35 ng/g, Ni=271±38 ng/g, Se=181±17 ng/g, Pb=43±8 ng/g, Cd=21±3 ng/g and Hg=6.6±3.6 ng/g. All of the above recommended concentration ranges, except that for Ni, fell into category A, i.e. values recommended with a high degree of confidence according to the certification criteria established by Pszonicki.  相似文献   

11.
Skh:HR-1 hairless mice were irradiated chronically with sub-erythemal doses of UVB radiation, and a number of biochemical parameters in the skin were determined after 6, 12, 18, and 24 wk of exposure. The parameters measured were water, collagen, elastin, and glycosaminoglycan content; collagenase and elastase levels; and Bz-Tyr-OEt (N-benzoyl-L-tyrosine ethyl ester) and BAPNA (alpha-N-benzoyl-DL-arginine-p-nitroanilide) hydrolyzing activities. Data for UVB radiation-exposed and chronological age-matched control mice were compared with respect to unit area and to unit mass of skin. On a unit area of skin basis, UVB radiation exposure increased the level of most parameters. The particular exceptions were collagen and collagenase which remained constant. On a mass of skin basis, though, there is an apparent decrease in collagen content because of the increase in the other skin components. This suggests that there is insufficient collagen in UVB radiation-exposed skin to support the increasing mass of the tissue.  相似文献   

12.
13.
14.
In this study, the total phenolic amounts and antioxidant activities of plant extracts obtained from some common Mediterranean plant species collected from different places in Jordan were determined. The phenolic constituents of these extracts were also determined using HPLC. The total phenolic amounts ranged from 52.8 to 876.9 mg GAE per 100 g dry material. The antioxidant activities were evaluated according to the 2,2-diphenyl-1-picrylhydrazyl radical scavenger method. Sage (Salvia officinalis) showed the highest antioxidant activity (91%), while the lowest (11.3%) was seen in parsley (Petroselinum crispum). A strong correlation (r = 0.85) between antioxidant activity and total phenolic content was found. The phenolic compounds identified by HPLC were gallic acid, protocatechuic acid, catechin, gentisic acid, chlorogenic acid, vanillic acid, syringic acid, caffeic acid, epicatechin and benzoic acid. All the investigated plants contain gallic acid, whose phenolic content ranged from 0.4 to 37.8 mg per 100 g, catechin (0.3-339.9 mg per 100 g), protocatechuic acid (0.3-41.9 mg per 100 g) and gentisic acid (0.3-35.8 mg per 100 g), while caffeic acid (0.3-2.6 mg per 100 g) was detected in six species only. These natural plant phenolics could thus be a good source of antioxidants for applications in food.  相似文献   

15.
Solar elastosis is observed in the dermis of photoaged skin and is characterized by an accumulation of abnormal elastin in the extracellular space. Several proteases that degrade elastin in the extracellular space have been implicated in its formation. The lysosomal protease cathepsin K (catK) has recently been described to be highly expressed in skin fibroblasts under certain pathologic conditions. As cat K is one of the most potent mammalian elastases, we hypothesized that catK-mediated intracellular elastin degradation may play a role in the formation of solar elastosis. Immunostaining of cultured skin fibroblasts incubated with labeled elastin demonstrated internalization of extracellular elastin to lysosomes and its degradation by catK. Induction of catK expression in fibroblasts was observed both in vitro and in vivo after exposure to longwave UVA. In contrast to fibroblasts from young donors, cells from old donors failed to activate catK in response to UVA. These data suggest a role of intracellular elastin degradation by catK in the formation of solar elastosis. We propose that an age-related decline in catK activity, in particular after UV exposure, may promote the formation of actinic elastosis through a decline of orderly intracellular elastin degradation and subsequent accumulation of elastin in the extracellular space.  相似文献   

16.
Altered collagen and elastin content correlates closely with remodeling of the arterial wall after injury. Optical analytical approaches have been shown to detect qualitative changes in plaque composition, but the capacity for detection of quantitative changes in arterial collagen and elastin content in vivo is not known. We have assessed fluorescence spectroscopy for detection of quantitative changes in arterial composition in situ, in rabbit models of angioplasty and stent implant. Fluorescence emission intensity (FEI) recorded at sites remote from the primary implant site was correlated with immunohistochemical (IH) analysis and extracted elastin and collagen. FEI was significantly decreased (P<0.05) after treatment with anti-inflammatory agents, and plaque area decreased on comparison with saline-treated rabbits after stent implant or angioplasty (Por=0.961) analysis were detected by multiple regression (MR) analysis. Good correlations also were found for FEI with elastin and collagen measured by high-performance liquid chromatography; MR analysis provided highly predictive values for collagen and elastin (R2>or=0.994). Fluorescence spectroscopic analysis detects quantitative compositional changes in arterial connective tissue in vivo, demonstrating changes at sites remote from primary angioplasty and stent implant sites.  相似文献   

17.
Hepatic ganglioside composition was investigated in normal and cholestatic Wistar rats. Cholestasis was induced by 17alpha-ethinylestradiol (EE; 5 mg/kg body weight s.c. for 18 days). As compared with controls, the EE administration resulted in severe cholestasis, as indicated by biochemical as well as morphological signs. Gangliosides isolated from the liver tissue were separated by TLC, with resorcinol-HCl detection and densitometric evaluation. As compared with controls, the total hepatic lipid sialic acid content in cholestatic rats was increased almost 2-fold (44.3 +/- 15.2 vs 79.1 +/- 9.0 nmol/g wet weight of liver tissue, p < 0.01). This increase was primarily due to the increase of ganglioside GD1a (3.6 +/- 1.0 vs 11.8 +/- 3.0 nmol/g wet weight of liver tissue, p = 0.001), as well as to the enormous up-regulation of b-series gangliosides GD3 (0.08 +/- 0.03 vs 2.0 +/- 1.2 nmol/g wet weight of liver tissue, p = 0.002), GD1b (0.1 +/- 0.06 vs 5.4 +/- 1.6 nmol/g wet weight of liver tissue, p = 0.002) and GT1b (0.06 +/- 0.03 vs 6.4 +/- 2.6 nmol/g wet weight of liver tissue, p = 0.002). As the majority of gangliosides are concentrated in cell membranes, our findings suggest that dramatic increase of b-series gangliosides might contribute to the protection of hepatocytes against the deleterious effects of cholestasis.  相似文献   

18.
The level of arsenic in six different species of fish collected from Lake Michigan near Saugatuck, Michigan has been measured using radiochemical neutron activation analysis. The arsenic concentration was found to vary from 0.05 μg/g (wet weight) for yellow perch fillet to 1.4 μg/g (wet weight) for eviscerated bloater chubs. A significant correlation was observed between arsenic concentrations and number of years in the lake for lake trout; correlations were also observed between arsenic concentrations and length of lake trout and smelt. No such correlations were found for alewife or yellow perch.  相似文献   

19.
The effect of the preparation conditions on the in vitro stability of99mTc (Sn)-pyrophosphate kit solution has been examined. To extend the shelf-life of the preparation, different methods of protection were tested. Nitrogen purging stabilizes the kit for at least 6 h after labeling when the content of99mTc-pertechnetate raises to about 5%. However, this method is ineffective in the presence of hydrogen peroxide. The protecting ability of two chemicals was also determined. Gentisic acid gave good results. In the presence of 50 g of gentisic acid per ml of the kit the content of pertechnetate was 1–2% throughout the examined time interval. To eliminate the influence of hydrogen peroxide (6 g per ml of the kit) about 100 g of gentisic acid is needed. N, N-diphenyl-p-phenylenediamine (DPPD) performs some protecting effect only when used in the samples protected by nitrogen purging. However its protecting ability is lower that in the case of gentisic acid.  相似文献   

20.
It is necessary to understand the changes that occur during the initial processing of lamb skins, because these will affect the final quality of the leather. The types of collagen, their macro and micro structures, the presence of proteins other than collagens, and the quantity and the type of proteoglycans, all have a profound effect on the quality of leather. Proteins isolated from untreated or raw sheep skin and from pickled skin (skins treated with sodium sulfide and lime followed by bating with enzymes, then preserved in sodium chloride and sulfuric acid) were significantly different when analysed by use of 2D gel electrophoresis and mass spectrometry. Agarose gel electrophoresis with a very sensitive sequential staining procedure has been used to identify the glycosaminoglycans present in raw and treated skin and their impact on quality of leather. Results showed that effective removal of proteoglycans acting as inter-fibrillar adhesives of collagen fibrils seemed to improve leather quality. Removal of these molecules not only opens up the fibre structure of the skin but may also be important in wool removal. The presence of elastin, which imparts elastic properties to skin, is of significant importance to tanners. The amino acids desmosine and isodesmosine, found exclusively in elastin, were quantitatively analysed to assess the role of elastin in leather quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号