首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (DMC) calculations are performed for S4. The effect of single- and multireference trial functions, as well as choice of orbitals, is investigated for its effect on the quality of the Monte Carlo estimates. Estimates of symmetric (two S2 molecules) and asymmetric (S atom and S3 molecule) bond dissociation are reported. The conformational change of S4 from C2v to D2h defines a double-well potential and is also estimated. Multireference DMC with natural orbitals (DMC/NO) estimates the energy of the conformational change as 1.20(20) kcal/mol; the dissociation of the long S-S single bond is estimated at 21.1(1.3) kcal/mol, and the asymmetric bond energy is estimated as 53.2(2.4) kcal/mol. An estimate of the total atomization energy using multireference DMC/NO gives a value of 219.5(2.2) kcal/mol. The relative quality of result and implications for simplified trial function design are discussed.  相似文献   

2.
Hydrogen‐transfer reactions are an important class of reactions in many chemical and biological processes. Barrier heights of H‐transfer reactions are underestimated significantly by popular exchange–correlation functional with density functional theory (DFT), while coupled‐cluster (CC) method is quite expensive and can be applied only to rather small systems. Quantum Monte‐Carlo method can usually provide reliable results for large systems. Performance of fixed‐node diffusion quantum Monte‐Carlo method (FN‐DMC) on barrier heights of the 19 H‐transfer reactions in the HTBH38/08 database is investigated in this study with the trial wavefunctions of the single‐Slater–Jastrow form and orbitals from DFT using local density approximation. Our results show that barrier heights of these reactions can be calculated rather accurately using FN‐DMC and the mean absolute error is 1.0 kcal/mol in all‐electron calculations. Introduction of pseudopotentials (PP) in FN‐DMC calculations improves efficiency pronouncedly. According to our results, error of the employed PPs is smaller than that of the present CCSD(T) and FN‐DMC calculations. FN‐DMC using PPs can thus be applied to investigate H‐transfer reactions involving larger molecules reliably. In addition, bond dissociation energies of the involved molecules using FN‐DMC are in excellent agreement with reference values and they are even better than results of the employed CCSD(T) calculations using the aug‐cc‐pVQZ basis set. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
Tests have been made to benchmark and assess the relative accuracies of low-order multireference perturbation theories as compared to coupled cluster (CC) and full configuration interaction (FCI) methods. Test calculations include the ground and some excited states of the Be, H(2), BeH(2), CH(2), and SiH(2) systems. Comparisons with FCI and CC calculations show that in most cases the effective valence shell Hamiltonian (H(v)) method is more accurate than other low-order multireference perturbation theories, although none of the perturbative methods is as accurate as the CC approximations. We also briefly discuss some of the basic differences among the multireference perturbation theories considered in this work.  相似文献   

4.
n–electron valence state perturbation theory (NEVPT) is a form of multireference perturbation theory where all the zero-order wave functions are of multireference nature, being generated as eigenfunctions of a two–electron model Hamiltonian. The absence of intruder states makes NEVPT an interesting choice for the calculation of electronically excited states. Test calculations have been performed on several valence and Rydberg transitions for the formaldehyde and acetone molecules; the results are in good accordance with the best calculations and with the existing experimental data.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

5.
The low lying electronic states of 3d transition-metal-benzene complexes MBz (with M=Sc, V, and Ni) have been investigated by performing complete active space self-consistent field and multireference configuration interaction calculations. Geometries, energetics, and electronic structure are presented and discussed. The results concerning both the geometry and the spin multiplicity of the ground-state contrast with those obtained from previous calculations based on density functional theory. The disagreements between single-reference-based approaches and multireference methods in the characterization of neutral 3d-metal complexes are discussed.  相似文献   

6.
Results are reported from calculations of electric dipole transition moments for various electronic transitions in Be, CH2, and A1H using multireference singles and doubles configuration interaction, quasi-degenerate variational perturbation theory, and multireference averaged coupled pair functional theory. A simple normalization scheme is used for the quasi-degenerate variational perturbation theory and multireference averaged coupled pair functional theory wave functions. In all cases, comparison is made with full configuration interaction results in the valence space. For Be and CH2, all methods are of comparable quality in calculating the transition moments and excitation energies, with averaged coupled-pair functional theory yielding slightly quicker convergence of the excitation energies and transition moments in most cases. For AlH, multireference singles and doubles configuration interaction is somewhat more accurate for the calculation of the transition moment. Factors that affect the accuracy of the methods are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The presently used electrolytes in Lithium ion batteries, dimethyl carbonate (DMC), and ethylene carbonate are flammable. Trimethyl phosphate (TMP) and dimethyl methyl phosphonate (DMMP) have been shown to be potential nonflammable electrolytes. Density functional theory is used to calculate the structure and stability of the solvation complexes of TMP and DMMP. The calculations indicate that TMP and DMMP can form a solvation complex of the form Li+(X)4 where X is the TMP or DMMP molecule. Calculations of the solvation energy and bond dissociation energies to remove one TMP and DMMP from the solvation complexes are compared with the same calculations on DMC. The results indicate that TMP and DMMP are considerably more stable than DMC.  相似文献   

8.
We present a detailed theoretical investigation on the dissociation energy of CuO(+), carried out by means of coupled cluster theory, the multireference averaged coupled pair functional (MR-ACPF) approach, diffusion quantum Monte Carlo (DMC), and density functional theory (DFT). At the respective extrapolated basis set limits, most post-Hartree-Fock approaches agree within a narrow error margin on a D(e) value of 26.0 kcal mol(-1) [coupled-cluster singles and doubles level augmented by perturbative triples corrections, CCSD(T)], 25.8 kcal mol(-1) (CCSDTQ via the high accuracy extrapolated ab initio thermochemistry protocol), and 25.6 kcal mol(-1) (DMC), which is encouraging in view of the disaccording data published thus far. The configuration-interaction based MR-ACPF expansion, which includes single and double excitations only, gives a slightly lower value of 24.1 kcal mol(-1), indicating that large basis sets and triple excitation patterns are necessary ingredients for a quantitative assessment. Our best estimate for D(0) at the CCSD(T) level is 25.3 kcal mol(-1), which is somewhat lower than the latest experimental value (D(0) = 31.1 ± 2.8 kcal mol(-1)[semicolon] reported by the Armentrout group) [Int. J. Mass Spectrom. 182/183, 99 (1999)]. These highly correlated methods are, however, computationally very demanding, and the results are therefore supplemented with those of more affordable DFT calculations. If used in combination with moderately-sized basis sets, the M05 and M06 hybrid functionals turn out to be promising candidates for studies on much larger systems containing a [CuO](+) core.  相似文献   

9.
[reaction: see text] The mechanisms of perphenylbutenyne reactivity are examined through B3LYP and multireference ab initio calculations on model systems. Calculations for the formation of a naphthalene derivative suggest a process similar to that seen previously in the literature. A new mechanism for perphenylbutenyne dimerization to form a semibullvalene derivative is proposed and supported by calculations.  相似文献   

10.
A number of simplifications in defining the reference wave functions used in multireference second-order M?ller-Plesset perturbation theory (MRMP2) calculations are studied. The usual multiconfigurational orbital optimization is avoided by using Hartree-Fock or Kohn-Sham orbitals; the complete configuration expansion in the active-space orbitals is replaced by a severely truncated expansion, and the spin-component-scaling idea is applied to the multireference perturbation expansion. We assess these approximations to the full procedure by calculating the barrier heights for 15 processes taken from the Zhao-Gonzalez-Garcia-Truhlar database. Our results suggest that reliable and relatively cheap reference wave functions for MRMP2 calculations can be obtained from the simplifications introduced here. We hope that this will enable the application of the MRMP2 method to a larger range of chemical systems.  相似文献   

11.
We report variational and diffusion quantum Monte Carlo (VMC and DMC) calculations of the dissociation energies of the three-electron hemibonded radical cationic dimers of He, NH3, H2O, HF, and Ne. These systems are particularly difficult for standard density-functional methods such as the local-density approximation and the generalized gradient approximation. We have performed both all-electron (AE) and pseudopotential (PP) calculations using Slater-Jastrow wave functions with Hartree-Fock single-particle orbitals. Our results are in good agreement with coupled-cluster CCSD(T) calculations. We have also studied the relative stability of the hemibonded and hydrogen-bonded water radical dimer isomers. Our calculations indicate that the latter isomer is more stable, in agreement with post-Hartree-Fock methods. The excellent agreement between our AE and PP results demonstrates the high quality of the PPs used within our VMC and DMC calculations.  相似文献   

12.
陈飞武 《物理化学学报》2007,23(9):1360-1364
采用由H2、He 和LiH分别组成的三个超分子系列, 从数值的角度研究了多参考态微扰理论和单双重激发的多参考态组态相互作用(MRSDCI)的大小一致性. 首先在模型空间中进行一个小的完全组态相互作用计算, 然后进行多参考态微扰计算. 数值结果显示, 对这三个模型体系, 我们以前提出的多参考态二级微扰公式是完全大小一致的. 和MRSDCI结果比较, 我们也对它的计算精度进行了讨论. 另外, 还对两组多参考态微扰理论的二级和三级计算结果以及MRSDCI的计算结果的大小一致性误差进行了研究和比较.  相似文献   

13.
The second‐order multireference perturbation theory using an optimized partitioning, denoted as MROPT(2), is applied to calculations of various molecular properties—excitation energies, spectroscopic parameters, and potential energy curves—for five molecules: ethylene, butadiene, benzene, N2, and O2. The calculated results are compared with those obtained with second‐ and third‐order multireference perturbation theory using the traditional partitioning techniques. We also give results from computations using the multireference configuration interaction (MRCI) method. The presented results show very close resemblance between the new method and MRCI with renormalized Davidson correction. The accuracy of the new method is good and is comparable to that of second‐order multireference perturbation theory using Møller‐Plesset partitioning. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1390–1400, 2003  相似文献   

14.
Quantum Monte Carlo calculations with the diffusion Monte Carlo (DMC) method have been used to compute the binding energy curves of hydrogen on benzene, coronene, and graphene. The DMC results on benzene agree with both M?ller-Plessett second order perturbation theory (MP2) and coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] calculations, giving an adsorption energy of ~25 meV. For coronene, DMC agrees well with MP2, giving an adsorption energy of ~40 meV. For physisorbed hydrogen on graphene, DMC predicts a very small adsorption energy of only 5 ± 5 meV. Density functional theory (DFT) calculations with various exchange-correlation functionals, including van der Waals corrected functionals, predict a wide range of binding energies on all three systems. The present DMC results are a step toward filling the gap in accurate benchmark data on weakly bound systems. These results can help us to understand the performance of current DFT based methods, and may aid in the development of improved approaches.  相似文献   

15.
A theoretical study is reported of the Cl+CH3OH-->CH2OH+HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies, and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. M?ller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol.  相似文献   

16.
17.
18.
The formalism of response theory is applied to derive expressions for static and dynamic polarizabilities within the state-specific multireference coupled-cluster theory suggested by Mukherjee and co-workers (Mk-MRCC) [J. Chem. Phys. 110, 6171 (1998)]. We show that the redundancy problem inherent to Mk-MRCC theory gives rise to spurious poles in the Mk-MRCC response functions, which hampers the reliable calculation of dynamic polarizabilities. Furthermore, we demonstrate that in the case of a symmetry-breaking perturbation a working response theory is obtained only if certain internal excitations are included in the responses of the cluster amplitudes. Exemplary calculations within the singles and doubles approximation (Mk-MRCCSD) are carried out on aryne compounds to illustrate the impact of a multireference ansatz on the polarizability.  相似文献   

19.
We performed an ab initio study of the singlet-triplet gap in trimethylenmethane (TMM) and of the ring-opening of methylenecyclopropane by the multireference BWCC method. Since the singlet states of TMM and intermediates between TMM and methylenecyclopropane have a strong multiconfigurational character, it is necessary to use a multireference method. The cc-pVDZ and cc-pVTZ basis sets were used. We compared our results with experiments, where available, and with previous calculations performed by MCSCF and spin-flip coupled-cluster-type methods.  相似文献   

20.
Diffusion Monte Carlo (DMC) calculations are performed on the monocyclic and bicyclic forms of m-benzyne, which are the equilibrium structures at the CCSD(T) and CCSD levels of coupled cluster theory. We employed multiconfiguration self-consistent field trial wave functions which are constructed from a carefully selected eight-electrons-in-eight-orbitals complete active space [CAS(8,8)], with configuration state function coefficients that are reoptimized in the presence of a Jastrow factor. The DMC calculations show that the monocyclic structure is lower in energy than the bicyclic structure by 1.9(2) kcal/mole, which is in excellent agreement with the best coupled cluster results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号