首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differential adsorption heat curves for hydrocarbons on silicalite feature Langmuir invariance without apparent interaction for heptane, a linear increase with increasing occupancy for pentane, and great complexity with both minima and maxima for benzene. The adsorption heat increment per CH2 group is 10.0 kJ/mole from the adsorption heat data for ethane, butane, pentane, and heptane, while the free regression term corresponding to the adsorption of 2H or H 2 is 11.5 kJ/mole. The mean molar entropies of pentane and heptane is less than the entropies of the liquids by -60 J/mole · K, while the state of normal alkanes in silicalite channels is solidlike. The isotherms for the adsorption of hydrocarbons on silicalite are described completely by the volumetricmicropore occupancy theory equations. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2333–2335, October, 1989.  相似文献   

2.
The adsorption and separation of linear and branched alkanes in the isoreticular metal-organic framework IRMOF-1 have been investigated using Monte Carlo simulation. For pure linear alkanes (C1-nC5), the limiting adsorption properties exhibit linear behavior with the alkane carbon number; the long alkane is preferentially adsorbed over the short alkane at low fugacities, whereas the reverse is found at high fugacities. For pure branched alkanes (C5 isomers), the linear isomer adsorbs more than its branched analogue. The adsorbed amounts of pure alkanes in IRMOF-1 are substantially greater than in a carbon nanotube bundle and in silicalite. For a five-component mixture of C1 to nC5 linear alkanes, the long alkane adsorption first increases and then decreases with increasing fugacity, whereas short alkane adsorption continually increases and progressively replaces the long alkane at high fugacity due to the size entropy effect. For a three-component mixture of C5 isomers, the adsorption of each isomer increases with increasing fugacity until saturation, though there is less adsorption of the branched isomer due to the configurational entropy effect. The adsorption selectivity among the alkanes in IRMOF-1 is smaller than in a carbon nanotube bundle and in silicalite.  相似文献   

3.
We evaluated the accuracy of periodic density functional calculations for adsorption enthalpies of water, alkanes, and alcohols in silicalite and HZSM‐5 zeolites using a gradient‐corrected density functional with empirical dispersion corrections (PBE‐D) as well as a nonlocal correlation functional (vdW‐DF2). Results of both approaches agree in acceptable fashion with experimental adsorption energies of alcohols in silicalite, but the adsorption energies for n‐alkanes in both zeolite models are overestimated, by 21?46 kJ mol?1. For PBE‐D calculations, the adsorption of alkanes is exclusively determined by the empirical dispersion term, while the generalized gradient approximation‐DFT part is purely repulsive, preventing the molecule to come too close to the zeolite walls. The vdW‐DF2 results are comparable to those of PBE‐D calculations, but the latter values are slightly closer to the experiment in most cases. Thus, both computational approaches are unable to reproduce available experimental adsorption energies of alkanes in silicalite and HZSM‐5 zeolite with chemical accuracy. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Hierarchical zeolites are advanced materials possessing the catalytic and adsorption properties of conventional zeolites while eliminating their transport limitations through the introduction of mesopores. Recent experiments comparing the adsorption in hierarchical self‐pillared pentasils (SPP) and silicalite‐1 (MFI) revealed an interesting crossover in sorbate loading for branched or long‐chain alkanes but not for shorter linear alkanes, but an explanation for this behavior is not readily available through experimental probes due to the complications arising from the presence of multiple adsorption sites. Here we present a molecular simulation study on the adsorption of alkane isomers and show that a multi‐step mechanism, found here for all molecules, is responsible for the observed phenomena.  相似文献   

5.
In this work, adsorption and diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) in ZSM-5-type zeolites were studied using molecular simulation methods. Grand canonical Monte Carlo technique was to calculate adsorption isotherms and heats of vaporization of TCE and PCE in zeolite. The results demonstrated that the Pnma-P2(1)2(1)2(1) symmetry transition of the zeolite framework has no significant effect on the TCE adsorption capacity of the silicalite, but it causes an increase of the PCE adsorption capacity. Simulations using a silicalite framework with Pnma symmetry showed that the adsorption capacity of the silicalite was limited to five molecules per unit cell. However, when a framework with P2(1)2(1)2(1) symmetry was used in the simulations, the capacity reached to eight molecules per unit cell, which is the actual adsorption capacity. To calculate intracrystalline diffusion coefficients of these compounds, molecular dynamics simulations were performed at different temperatures and loadings. The results show that the zeolite symmetry has a significant impact on diffusion coefficients of the sorbate molecules.  相似文献   

6.
Recent developments in Configurational-Bias Monte Carlo (CBMC) techniques allow the accurate calculation of the sorption isotherms for alkanes, and their mixtures, in various zeolites. The CBMC simulations give new insights into subtle entropy effects affecting mixture adsorption. Three types of entropy effects can be distinguished. (1) Size entropy effects favour the component with the smaller number of C atoms because the smaller molecule finds it easier to fill in the 'gaps' within the zeolite matrix at high molecular loadings. (2) Configurational entropy effects come into play for mixtures of alkanes that differ in the degree of branching. For a mixture of linear and branched alkanes with the same number of C atoms, configurational entropy effects favour the linear isomer because such molecules 'pack' more efficiently within, say, the intersecting channel topology of MFI zeolite. (3) Length entropy effects comes into force for sorption of linear and branched alkanes within the cylindrical channels of say AFI and MOR zeolites; here the double branched alkane has the shortest length and can be packed more efficiently within the channels. We demonstrate that CBMC simulations allow the efficient screening of zeolite structures for a given separation duty and aid the development of novel separation processes exploiting entropy effects.  相似文献   

7.
The heats of adsorption of lower alcohols on NaZSM-5 have a stepwise appearance and each step corresponds to the stoichiometric formation of adsorption complexes of Na+ ions with from one to four alcohol molecules. All the adsorption complexes are located at zeolite channel intersections, while the alkyl groups enter these channels. The heats of adsorption of alcohols on NaZSM in the region of the formation of adsorption complexes with cations markedly exceed the heats of adsorption on silicalite, while on the noncationic part of the NaZSM-5 structure, they are identical to the heats of adsorption on silicalite. The mean molar integral adsorption entropies of alcohols are significantly less than the entropy of the liquid. The adsorbed molecules are in a solidlike state. The isotherms for the adsorption of alcohols on NaZSM-5 are completely described by VMOT equations.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2633–2635, November, 1989.  相似文献   

8.
This molecular simulation work focuses on the adsorption of water in a priori hydrophobic silicalite-1, a microporous ordered silica. The water-water interactions are described with the SPC model, while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption isotherm at 300 K, the configurational energies, and the isosteric heat of adsorption are calculated by the grand canonical Monte Carlo (GCMC) simulation method. The thermodynamic integration scheme allows one to calculate the grand potential along the adsorption isotherm. The adsorption results are compared with experiments, showing only qualitative agreement. Indeed, the simulations do not reproduce the expected hydrophobicity of silicalite (Eroshenko, V.; Regis, R.-C.; Soulard, M.; Patarin, J. C. R. Phys. 2002, 3, 111). This indicates that common models used to describe confined polar molecules are far from being operative. In this work, it is shown, on the basis of periodic ab initio calculations, that confined water molecules in silicalite have a dipole value roughly 10% smaller than that in the bulk liquid phase, indicating that the environment felt by a confined water molecule in silicalite pores is not equivalent to that in the bulk liquid. This suggests that effective intermolecular potentials parametrized for bulk water are inefficient to describe ultraconfined water molecules. Reducing the SPC water dipole moment by 5% (i.e., decreasing water partial charges in magnitude) in GCMC calculations does allow reproducing the experimental water/silicalite isotherm at 300 K.  相似文献   

9.
The adsorption and diffusion of a binary mixture of supercritical CO2 and benzene on silicalite (MFI-type) have been studied through the grand canonical Monte Carlo and molecular dynamics (MD) simulations. The adsorption behavior of pure CO2 on silicalite was discussed in detail from the adsorption isotherms, adsorption sites, interaction energies, and isosteric heats of adsorption. For the mixture, the influences of temperature, pressure and composition on the adsorption isotherms have been examined. The adsorption site behavior of the mixture has been analyzed, and benzene molecules get adsorbed preferentially in the more spacious channel intersection positions. These simulation results suggest that SC-CO2 fluid can be used as an efficient desorbent of larger aromatics in the zeolite material. The diffusion characteristic for the benzene/CO2 mixture was studied on the basis of MD simulation. It was found that the large coadsorbed benzene molecule has a pronounced effect on the CO2 diffusion in the mixture, while the mobility of benzene molecules is very small due to geometrical restrictions.  相似文献   

10.
Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation. These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. In this study, the selective uptake of lighter component during liquid phase adsorption of C \(_{14}\) /C \(_{15}\) and C \(_{15}\) /C \(_{16}\) n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand-canonical Monte Carlo molecular simulation technique and a coarse-grained siting analysis. The simulations are conducted under conditions of low and intermediate levels of loading. The siting pattern of the adsorbates inside the zeolite pores explain the selectivity as seen in experiments.  相似文献   

11.
Three well-defined adsorption sites have been found on opened single-wall carbon nanotubes by temperature-programmed desorption measurements for several alkanes. A series of linear chain alkanes from pentane to nonane, as well as a branched alkane molecule, 2,2,4-trimethylpentane, were used to elucidate the effect of molecular length on the capacity of the adsorption sites. The two highest-energy adsorption sites were assigned as the nanotube interior sites and groove sites on the outside of the nanotube bundles. Hybrid Monte Carlo simulations were performed to probe the molecular-level details of adsorption. Both in experiments and in the simulation, the groove sites were seen to behave as one-dimensional adsorption space, demonstrating an inverse dependence of capacity on the length of the adsorbed molecule. In contrast, the capacity of the internal sites was found to depend inversely on the volume occupied by the molecule.  相似文献   

12.
The use of methyl tertiary butyl ether (MTBE) as a gasoline additive has resulted in serious environmental problems following spills and leaks, primarily due to MTBE's high solubility in water. Remediation technologies have involved air stripping, advanced oxidation, and sorption on granular activated carbons (GAC). Hydrophobic zeolites, such as silicalite, dealuminated Y, mordenite, and beta, have been of interest in recent studies for the removal of MTBE from water. Some of these materials have shown a better performance than GAC particularly in the microg/L range. We made Monte Carlo and molecular dynamics simulations of the adsorption of pure MTBE in silicalite, mordenite, and zeolite beta with different Na+ loadings at room temperature to reveal the factors affecting the adsorption process. The results show that although the three zeolites studied here have similar pore volumes, the pore structure of zeolite beta causes a significant difference on the predicted amount of MTBE adsorbed. It was found that the position of the Na+ cations has an important effect at lower pressures. Within the range of [Na+] studied, the amount of Na+ was not found to be critical on the adsorption capacity of any of the zeolites studied, except at very low pressures in silicalite and zeolite beta.  相似文献   

13.
A possibility of efficient urease adsorption on silicalite for the purpose of biosensor creation was investigated. The procedure of urease adsorption on silicalite is notable for such advantages as simple and fast performance and non‐use of toxic or auxiliary compounds. Optimal conditions for modifying transducer surfaces with silicalite and subsequent urease adsorption on these surfaces were selected. The working parameters of the created biosensor were optimized. The developed biosensor with adsorbed urease was characterized by good intra‐reproducibility (RSD – 4.5 %), improved inter‐reproducibility (RSD of urea determination is 9 %) and operational stability (less than 10 % loss of activity after 10 days). Besides, the developed method for enzyme adsorption on silicalite was compared with the traditional methods of urease immobilization in biosensorics. Working conditions of the produced biosensor (pH and ionic strength) were shown to be close to those of the biosensor based on urease immobilized in GA vapor. For these reasons, it was concluded that the method of enzyme adsorption on silicalite is well‐suited for biosensor standardization aimed at its further manufacture.  相似文献   

14.
The single component adsorption of alkanes in carbon slit pores was studied using configurational-biased grand canonical Monte Carlo simulations. Wide ranges of temperature, pressure, alkane chain length, and slit height were studied to evaluate their effects on adsorption. Adsorption isotherms and density and orientation profiles were calculated. The behavior of long alkanes at high temperatures was found to be similar to short alkanes at lower temperatures. This suggests that the isotherms may be related through the Polanyi potential theory.  相似文献   

15.
A detailed study of the luminescence decay curves of pyrene included within p-tert-butylcalix[4]arene cavities and benzophenone into silicalite channels is reported. A new methodology for a lifetime distribution analysis of the decay curve of probes onto heterogeneous surfaces is presented, which allows for asymmetric distributions and uses Voigt profiles (Gaussian and Lorentzian mixture) instead of pure Gaussian or Lorentzian distributions. Our approach uses a very simple and widely available tool for fitting, the Microsoft Excel Solver. In the case of the pyrene/tert-butylcalix[4]arene sample, the room temperature luminescence detected in the microsecond time scale was not only the phosphorescence of pyrene but also monomer delayed fluorescence, crystal phosphorescence, and excimer delayed fluorescence. In the benzophenone/silicalite case, three emissive forms of benzophenone could be assigned, one of benzophenone included into the silicalite circular zigzag channels, another for emplacement into the elliptical straight channels and finally when benzophenone is placed at the crossing points of those silicalite channels, where smaller spatial restrictions for benzophenone exist.  相似文献   

16.
The adsorption of carbon dioxide and methane on silicalite pellets packed on a fixed bed has been studied. Equilibrium and kinetic measurements of the adsorption of carbon dioxide and methane have been performed, and a binary adsorption isotherm for carbon dioxide/methane mixtures has been obtained. A model based on the LDF approximation for the mass transfer has been used to describe the breakthrough curves obtained experimentally. A PSA cycle has been proposed for obtaining methane with purity higher than 98% from carbon dioxide/methane mixtures containing 38% and 50% methane, and its performance has been simulated using the proposed model. The simulation results show that silicalite can be a suitable adsorbent for employment in a PSA separation process for carbon dioxide removal from coalseam and landfill gases.  相似文献   

17.
Diffusion of methane and argon mixtures through the silicalite single-crystal membrane is studied using the dual-control volume-grand canonical molecular dynamics method to understand how surface resistances alter selectivity and permeance. Comparison of results from intracrystalline transport and entrance simulations for binary mixtures of CH4 and Ar shows that the selectivity of silicalite membranes toward Ar is enhanced in the presence of the surface resistances. In both cases, however, diffusion of faster Ar molecules was inhibited by slower diffusing CH4 molecules, whereas diffusion of the latter remained unaffected. This behavior was explained by the difference between the magnitudes of surface resistances for two molecules, which is much smaller for Ar because of its smaller permeant-crystal interaction size. We find that selectivity of the membrane at the surface depends strongly on total feed pressure and temperature, whereas this dependence is weak for intracrystalline diffusion. Furthermore, we show that the selectivity at the surface diminishes with crystal thickness until a certain thickness is reached, whereas the intracrystalline selectivity remains constant with increasing thickness. Finally, a study of diffusion of C2H6 and CF4 mixtures shows that the diatomic ethane molecules diffuse faster inside the zeolite channels, but their desorption is hindered to a larger extent than that of a spherical molecule with larger diameter and lower heat of adsorption. This observation indicates that the difference in molecular geometry is also a significant factor to explain the exit effect.  相似文献   

18.
The high heats of water adsorption on silicalite with the adsorption of 0.4 mmole/g result from an additional interaction with the silicalite OH groups, while the high heats of water adsorption on NaZSM-5 with the adsorption of 0.5 mmole/g result from an additional strong interaction with 0.5 mmole/g sodium cations. Tetraaqua complexes are formed about these sodium cations at the channel intersection sites in NaZSM-5. The first water molecule adds with an energy of about 100 kJ/mole, while the other three molecules add with the same energy of 56 ± 2 kJ/mole. The water adsorption isotherms on silicalite and NaZSM-5 are completely and satisfactorily described by two- and three-term VMOT equations.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2862–2864, December, 1989.  相似文献   

19.
重量法测定环戊烷在silicalite-1分子筛上的吸附特性   总被引:4,自引:0,他引:4  
用智能重量分析技术 (IGA)研究了环戊烷在silicalite 1分子筛上的吸附特性。结果表明 ,随着温度的降低 ,环戊烷的吸附等温线从第一类型过渡为第四类型 ,在 2 5 4K和 2 74K温度下吸附等温线呈现滞后环 ,为第四类型 ,而吸附等温线在 30 4K、32 3K下为阶梯形 ,在 35 4K、42 3K温度下呈第一类型 ,其中 42 3K温度下的吸附等温线可准确的用Langmuir方程来描述。本文同时讨论了吸附质分子间以及吸附质和吸附剂间的相互作用、分子结构特性、分子筛对吸附质分子的空间位阻、分子筛的能量不均匀表面等对环戊烷在silicalite 1分子筛上吸附性能的影响  相似文献   

20.
合成了全硅ZSM-5分子筛,制备了一种新型的全硅ZSM-5分子筛填充柱,成功地在室温下进行了O2,N2分离,并利用物化色谱法,准确而快速地测定了O2,N2在全硅ZSM-5分子筛填充柱上的吸附热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号