首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a Tychonoff space X we consider the compact-open and the topology of pointwise convergence on the set of all continuous real-valued functions, define a selective version of the Reznichenko property connecting the two topologies and characterize it dually via a suitable covering property of the space X.  相似文献   

2.
Conditions on a topological space X under which the space C(X,R) of continuous real-valued maps with the Isbell topology κ is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in Cκ(X,R) if and only if X is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in Cκ(X,R) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if X is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.  相似文献   

3.
《Quaestiones Mathematicae》2013,36(3-4):303-309
Abstract

For a completely regular space X and a normed space E let Ck (x, E) (resp., Cp (x, E)) be the set of all E-valued continuous maps on X endowed with the compact-open (resp., pointwise convergence) topology. It is shown that the set of all F-valued linear continuous maps on Ck (x, E) when equipped with the topology of uniform convergence on the members of some families of bounded subsets of Ck (x, E) is a complete uniform space if F is a Band space and X is Dieudonné complete. This result is applied to prove that Dieudonné completeness is preserved by linear quotient surjections from Ck (x, E) onto Ck (Y, E) (resp., from Cp (x, E) onto Cp (x, E)) provided E, F are Band spaces and Y is a k-space.  相似文献   

4.
Let Cp(X) be the space of all continuous real-valued functions on a space X, with the topology of pointwise convergence. In this paper we show that Cp(X) is not domain representable unless X is discrete for a class of spaces that includes all pseudo-radial spaces and all generalized ordered spaces. This is a first step toward our conjecture that if X is completely regular, then Cp(X) is domain representable if and only if X is discrete. In addition, we show that if X is completely regular and pseudonormal, then in the function space Cp(X), Oxtoby's pseudocompleteness, strong Choquet completeness, and weak Choquet completeness are all equivalent to the statement “every countable subset of X is closed”.  相似文献   

5.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

6.
Some relations between cardinal invariants ofX andC(X) are established in the weak topology, whereC(X) is the space of continuous real-valued functions onX in the compact-open topology.  相似文献   

7.
8.
If X is a compact-covering image of a closed subspace of product of a σ-compact Polish space and a compact space, then Ck(X,M), the space of continuous maps of X into M with the compact-open topology, is stratifiable for any metric space M.If X is σ-compact Polish, K is compact and M metric then every point of Ck(X×K,M) has a closure-preserving local base, and hence this function space is M1.  相似文献   

9.
In [M.H. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145] it is shown that in the set C(Nω,N) of all continuous maps of Nω into N, where N is an infinitely countable discrete topological space, the compact-open topology is not the finest splitting topology. Since Nω is consonant (see [S. Dolecki, G.H. Greco, A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide? Trans. Amer. Math. Soc. 347 (1995) 2869-2884]) the Isbell topology on C(Nω,N) also is not the finest splitting topology. This result is generalized in the present paper proving that it is true also for spaces having the so-called Specific Extension Property. The following spaces have the Specific Extension Property: (a) infinitely countable free unions of non-empty spaces, (b) non-compact Lindelöf zero-dimensional spaces, and (c) metric locally convex linear spaces. In particular, we prove that on the set of all real-valued functions on the (separable infinite dimensional) Hilbert space the compact-open topology does not coincide with the finest splitting topology.  相似文献   

10.
Let X be a Tychonoff space, H(X) the group of all self-homeomorphisms of X with the usual composition and the evaluation function. Topologies on H(X) providing continuity of the evaluation function are called admissible. Topologies on H(X) compatible with the group operations are called group topologies. Whenever X is locally compact T2, there is the minimum among all admissible group topologies on H(X). That can be described simply as a set-open topology, further agreeing with the compact-open topology if X is also locally connected. We show the same result in two essentially different cases of rim-compactness. The former one, where X is rim-compact T2 and locally connected. The latter one, where X agrees with the rational number space Q equipped with the euclidean topology. In the first case the minimal admissible group topology on H(X) is the closed-open topology determined by all closed sets with compact boundaries contained in some component of X. Moreover, whenever X is also separable metric, it is Polish. In the rational case the minimal admissible group topology on H(Q) is just the closed-open topology. In both cases the minimal admissible group topology on H(X) is closely linked to the Freudenthal compactification of X. The Freudenthal compactification in rim-compactness plays a key role as the one-point compactification does in local compactness. In the rational case we investigate whether the fine or Whitney topology on H(Q) induces an admissible group topology on H(Q) stronger than the closed-open topology.  相似文献   

11.
The Isbell, compact-open and point-open topologies on the set C(X,R) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α(X) of compact families of open subsets of a topological space X. Those α(X) for which addition is jointly continuous at the zero function in Cα(X,R) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α(X) for which Cα(X,R) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, that Cα(X,R) can be strictly finer than the compact-open topology, are given. To our knowledge, this is the first example of a splitting group topology strictly finer than the compact-open topology.  相似文献   

12.
Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X×R) be the hyperspace of all nonempty closed subsets of X×R. We prove the following result. Let X be a countably paracompact normal space. The following are equivalent: (a) dimX=0; (b) the closure of C(X) in CL(X×R) with the Vietoris topology consists of all FCL(X×R) such that F(x)≠∅ for every xX and F maps isolated points into singletons; (c) each usco map which maps isolated points into singletons can be approximated by continuous functions in CL(X×R) with the locally finite topology. From the mentioned result we can also obtain the answer to Problem 5.5 in [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] and to Question 5.5 in [R.A. McCoy, Comparison of hyperspace and function space topologies, Quad. Mat. 3 (1998) 243-258] in the realm of normal, countably paracompact, strongly zero-dimensional spaces. Generalizations of some results from [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] are also given.  相似文献   

13.
An extension of the Tychonoff theorem is obtained in characterizing a compact space by the nets and the images induced by any family of continuous functions on it. The idea of this extension is applied to get a new process and new observations of compactifications and the realcompactification. Finally, a sufficient and necessary condition of a vector sublattice or a subalgebra of C1(X) to be dense in (C1(X),∥·∥) is provided in terms of the nets in X induced by C1(X), where C1(X) is the space of all bounded real continuous functions on a topological space X with pointwise ordering, and ∥·∥ is the supremum norm.  相似文献   

14.
It is well known that (see, for example, [H. Render, Nonstandard topology on function spaces with applications to hyperspaces, Trans. Amer. Math. Soc. 336 (1) (1993) 101-119; M. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145; D.N. Georgiou, S.D. Iliadis, F. Mynard, in: Elliott Pearl (Ed.), Function Space Topologies, Open Problems in Topology, vol. 2, Elsevier, 2007, pp. 15-22]) the intersection of all admissible topologies on the set C(Y,Z) of all continuous maps of an arbitrary space Y into an arbitrary space Z, is always the greatest splitting topology. However, this intersection maybe not admissible. In the case, where Y is a locally compact Hausdorff space the compact-open topology on the set C(Y,Z) is splitting and admissible (see [R.H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945) 429-432; R. Arens, A topology for spaces of transformations, Ann. of Math. 47 (1946) 480-495; R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31]), which means that the intersection of all admissible topologies on C(Y,Z) is admissible. In [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31] an example of a non-locally compact Hausdorff space Y is given having the same property for the case, where Z=[0,1], that is on the set C(Y,[0,1]) the compact-open topology is splitting and admissible. This space Y is the set [0,1] with a topology τ, whose semi-regular reduction coincides with the usual topology on [0,1]. Also, in [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31, Theorem 5.3] another example of a non-locally compact space Y is given such that the compact-open topology on the set C(Y,[0,1]) is distinct from the greatest splitting topology.In this paper first we construct non-locally compact Hausdorff spaces Y such that the intersection of all admissible topologies on the set C(Y,Z), where Z is an arbitrary regular space, is admissible. Furthermore, for a Hausdorff splitting topology t on C(Y,Z) we find sufficient conditions in order that t to be distinct from the greatest splitting topology. Using this result, we construct some concrete non-locally compact spaces Y such that the compact-open topology on C(Y,Z), where Z is a Hausdorff space, is distinct from the greatest splitting topology. Finally, we give some open problems.  相似文献   

15.
Let C(X,T) be the group of continuous functions of a compact Hausdorff space X to the unit circle of the complex plane T with the pointwise multiplication as the composition law. We investigate how the structure of C(X,T) determines the topology of X. In particular, which group isomorphisms H between the groups C(X,T) and C(Y,T) imply the existence of a continuous map h of Y into X such that H is canonically represented by h. Among other results, it is proved that C(X,T) determines X module a biseparating group isomorphism and, when X is first countable, the automatic continuity and representation as Banach-Stone maps for biseparating group isomorphisms is also obtained.  相似文献   

16.
 In this note we prove that the uniformity of a complete metric space X is characterized by the vector lattice structure of the set U(X) of all uniformly continuous real functions on X. (Received 3 March 2000; in revised form 29 June 2000)  相似文献   

17.
Let π:XY be a surjective continuous map between Tychonoff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with finiteness properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map π:XY. The main result says that, for X a compact subset of Rn, the extension C(Y)⊆C(X) is integral if and only if X decomposes into a finite union of closed subsets such that π is injective on each one of them.  相似文献   

18.
For a non-compact metrizable space X, let E(X) be the set of all one-point metrizable extensions of X, and when X is locally compact, let EK(X) denote the set of all locally compact elements of E(X) and be the order-anti-isomorphism (onto its image) defined in [M. Henriksen, L. Janos, R.G. Woods, Properties of one-point completions of a non-compact metrizable space, Comment. Math. Univ. Carolin. 46 (2005) 105-123; in short HJW]. By definition λ(Y)=?n<ωclβX(UnX)\X, where Y=X∪{p}∈E(X) and {Un}n<ω is an open base at p in Y. We characterize the elements of the image of λ as exactly those non-empty zero-sets of βX which miss X, and the elements of the image of EK(X) under λ, as those which are moreover clopen in βX\X. This answers a question of [HJW]. We then study the relation between E(X) and EK(X) and their order structures, and introduce a subset ES(X) of E(X). We conclude with some theorems on the cardinality of the sets E(X) and EK(X), and some open questions.  相似文献   

19.
Let K be a compact convex subset of a separated locally convex space (over R) and let Ap(K) denote the space of all continuous real-valued affine mappings defined on K, endowed with the topology of pointwise convergence on the extreme points of K. In this paper we shall examine some topological properties of Ap(K). For example, we shall consider when Ap(K) is monolithic and when separable compact subsets of Ap(K) are metrizable.  相似文献   

20.
By a result of A.V. Arhangel'skiǐ and E.G. Pytkeiev, the space C(X) of the continuous real functions on X with the topology of pointwise convergence has tightness ω iff Xn is Lindelöf for every n ∈ ω. In this paper we describe other convergence properties of C(X) (e.g. the Fréchet-Urysohn properly) in terms of covering properties of X.In some cases the equivalence between these properties turn out to be dependent on the set theory we choose. Some open problems are also stated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号