首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a new infinite family of factorizations of complete bipartite graphs by factors all of whose components are copies of a (fixed) complete bipartite graph Kp,q. There are simple necessary conditions for such factorizations to exist. The family constructed here demonstrates sufficiency in many new cases. In particular, the conditions are always sufficient when q=p+1.  相似文献   

2.
通过讨论图中任意一对不相邻顶点的度和,对路可扩图的充分条件进行研究,得到了如下结果:设图G的阶是n,如果G中任意一对不相邻顶点的度和至少为3/2n-1,则图G是路可扩的.并且说明了这里两不相邻顶点的度和的下界3/2n-1是最好可能的.  相似文献   

3.
A balanced graph is a bipartite graph with no induced circuit of length . These graphs arise in integer linear programming. We focus on graph-algebraic properties of balanced graphs to prove a complete classification of balanced Cayley graphs on abelian groups. Moreover, in this paper, we prove that there is no cubic balanced planar graph. Finally, some remarkable conjectures for balanced regular graphs are also presented. The graphs in this paper are simple.  相似文献   

4.
A graph G of order at least 2n+2 is said to be n‐extendable if G has a perfect matching and every set of n independent edges extends to a perfect matching in G. We prove that every pair of nonadjacent vertices x and y in a connected n‐extendable graph of order p satisfy degG x+degG yp ? n ? 1, then either G is hamiltonian or G is isomorphic to one of two exceptional graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 75–82, 2002  相似文献   

5.
We say that a simple graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. The main results of this paper are as follows: (1) For every connected IM-extendable graph G with |V(G)| ≥ 4, the girth g(G) ≤ 4. (2) If G is a connected IM-extendable graph, then |E(G)| ≥ ${3\over 2}|V(G)| - 2$; the equality holds if and only if GT × K2, where T is a tree. (3) The only 3-regular connected IM-extendable graphs are Cn × K2, for n ≥ 3, and C2n(1, n), for n ≥ 2, where C2n(1, n) is the graph with 2n vertices x0, x1, …, x2n−1, such that xixj is an edge of C2n(1, n) if either |ij| ≡ 1 (mod 2n) or |ij| ≡ n (mod 2n). © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 203–213, 1998  相似文献   

6.
A labeling of a graph G is a bijection from E(G) to the set {1, 2,… |E(G)|}. A labeling is antimagic if for any distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every connected graph other than K2 is antimagic. In this article, we show that every regular bipartite graph (with degree at least 2) is antimagic. Our technique relies heavily on the Marriage Theorem. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 173–182, 2009  相似文献   

7.
In this paper, it will be shown that the isomorphism classes of regular orientable embeddings of the complete bipartite graph Kn,n are in one‐to‐one correspondence with the permutations on n elements satisfying a given criterion, and the isomorphism classes of them are completely classified when n is a product of any two (not necessarily distinct) prime numbers. For other n, a lower bound of the number of those isomorphism classes of Kn,n is obtained. As a result, many new regular orientable embeddings of the complete bipartite graph are constructed giving an answer of Nedela‐?koviera's question raised in 12 . © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

9.
It is shown that, if t is an integer ≥3 and not equal to 7 or 8, then there is a unique maximal graph having the path Pt as a star complement for the eigenvalue ?2. The maximal graph is the line graph of Km,m if t = 2m?1, and of Km,m+1 if t = 2m. This result yields a characterization of L(G ) when G is a (t + 1)‐vertex bipartite graph with a Hamiltonian path. The graphs with star complement PrPs or PrCs for ?2 are also determined. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 137–149, 2003  相似文献   

10.
If the edges of a graph G are colored using k colors, we consider the color distribution for this coloring a=(a1,a2,…,ak), in which ai denotes the number of edges of color i for i=1,2,…,k. We find inequalities and majorization conditions on color distributions of the complete bipartite graph Kn,n which guarantee the existence of multicolored subgraphs: in particular, multicolored forests and trees. We end with a conjecture on partitions of Kn,n into multicolored trees.  相似文献   

11.
Given a bipartite graph G(UV, E) with n vertices on each side, an independent set IG such that |UI|=|VI| is called a balanced bipartite independent set. A balanced coloring of G is a coloring of the vertices of G such that each color class induces a balanced bipartite independent set in G. If graph G has a balanced coloring we call it colorable. The coloring number χB(G) is the minimum number of colors in a balanced coloring of a colorable graph G. We shall give bounds on χB(G) in terms of the average degree $\bar{d}$ of G and in terms of the maximum degree Δ of G. In particular we prove the following:
  • $\chi_{{{B}}}({{G}}) \leq {{max}} \{{{2}},\lfloor {{2}}\overline{{{d}}}\rfloor+{{1}}\}$.
  • For any 0<ε<1 there is a constant Δ0 such that the following holds. Let G be a balanced bipartite graph with maximum degree Δ≥Δ0 and n≥(1+ε)2Δ vertices on each side, then $\chi_{{{B}}}({{G}})\leq \frac{{{{20}}}}{\epsilon^{{{2}}}} \frac{\Delta}{{{{ln}}}\,\Delta}$.
© 2009 Wiley Periodicals, Inc. J Graph Theory 64: 277–291, 2010  相似文献   

12.
13.
We show that a set M of m edges in a cyclically (3m ? 2)‐edge‐connected cubic bipartite graph is contained in a 1‐factor whenever the edges in M are pairwise distance at least f(m) apart, where © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 112–120, 2007  相似文献   

14.
Let Lct(G) denote the set of all lengths of closed trails that exist in an even graph G. A sequence (t 1,..., t p ) of elements of Lct(G) adding up to |E(G)| is G-realisable provided there is a sequence (T 1,..., t p ) of pairwise edge-disjoint closed trails in G such that T i is of length T i for i = 1,..., p. The graph G is arbitrarily decomposable into closed trails if all possible sequences are G-realisable. In the paper it is proved that if a ⩾ 1 is an odd integer and M a,a is a perfect matching in K a,a , then the graph K a,a -M a,a is arbitrarily decomposable into closed trails.   相似文献   

15.
Let s and t be vectors of positive integers with the same sum. We study the uniform distribution on the space of simple bipartite graphs with degree sequence s in one part and t in the other; equivalently, binary matrices with row sums s and column sums t . In particular, we find precise formulae for the probabilities that a given bipartite graph is edge‐disjoint from, a subgraph of, or an induced subgraph of a random graph in the class. We also give similar formulae for the uniform distribution on the set of simple directed graphs with out‐degrees s and in‐degrees t . In each case, the graphs or digraphs are required to be sufficiently dense, with the degrees varying within certain limits, and the subgraphs are required to be sufficiently sparse. Previous results were restricted to spaces of sparse graphs. Our theorems are based on an enumeration of bipartite graphs avoiding a given set of edges, proved by multidimensional complex integration. As a sample application, we determine the expected permanent of a random binary matrix with row sums s and column sums t . © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

16.
Let K_(m,n) be a complete bipartite graph with two partite sets having m and nvertices, respectively. A K_(p,q)-factorization of K_(m,n) is a set of edge-disjoint K_(p,q)-factorsof K_(m,n) which partition the set of edges of K_(m,n). When p=i and q is a prime number,Wang, in his paper "On K_(1,k)-factorizations of a complete bipartite graph" (Discrete Math,1994, 126; 359-364), investigated the K_(1,q)-factorization of K_(m,n) and gave a sufficientcondition for such a factorization to exist. In the paper "K_(1,k)-factorizations of completebipartite graphs" (Discrete Math, 2002, 259: 301-306), Du and Wang extended Wang'sresult to the case that q is any positive integer In this paper, we give a sufficient conditionfor K_(m,n) to have a K_(p,q)-factorization. As a special case, it is shown that the Martin's BACconjecture is true when p: q=k: (k+1) for any positive integer k.  相似文献   

17.
The paper studies the signed domination number and the minus domination number of the complete bipartite graph K p, q .  相似文献   

18.
In this paper, we study oriented bipartite graphs. In particular, we introduce “bitransitive” graphs. Several characterizations of bitransitive bitournaments are obtained. We show that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications, we characterize acyclic bitournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-Häggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved, in general, for oriented graphs. We also introduce the concept of undirected as well as oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). We obtain some conditions for connectedness of odd-even graphs. This study of odd-even graphs and their connectedness is motivated by a special family of odd-even graphs which we call “Goldbach graphs”. We show that the famous Goldbach's conjecture is equivalent to the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the twin prime conjecture) are related to various parameters of Goldbach graphs, motivating us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a small number of vertices.  相似文献   

19.
Let BCd,k be the largest possible number of vertices in a bipartite Cayley graph of degree d and diameter k. We show that BCd,k≥2(k−1)((d−4)/3)k−1 for any d≥6 and any even k≥4, and BCd,k≥(k−1)((d−2)/3)k−1 for d≥6 and k≥7 such that k≡3 (mod 4).  相似文献   

20.
The total chromatic number χT(G) of graph G is the least number of colors assigned to V(G) ∪ E(G) such that no adjacent or incident elements receive the same color. In this article, we give a sufficient condition for a bipartite graph G to have χT(G) = Δ(G) + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 133–137, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号