首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7] and [5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].  相似文献   

2.
A proper vertex coloring of a graph is said to be locally identifying if the sets of colors in the closed neighborhood of any two adjacent non-twin vertices are distinct. The lid-chromatic number of a graph is the minimum number of colors used by a locally identifying vertex-coloring. In this paper, we prove that for any graph class of bounded expansion, the lid-chromatic number is bounded. Classes of bounded expansion include minor closed classes of graphs. For these latter classes, we give an alternative proof to show that the lid-chromatic number is bounded. This leads to an explicit upper bound for the lid-chromatic number of planar graphs. This answers in a positive way a question of Esperet et al. [L. Esperet, S. Gravier, M. Montassier, P. Ochem, A. Parreau, Locally identifying coloring of graphs, Electron. J. Combin. 19 (2) (2012)].  相似文献   

3.
In this paper we examine the connections between equistable graphs, general partition graphs and triangle graphs. While every general partition graph is equistable and every equistable graph is a triangle graph, not every triangle graph is equistable, and a conjecture due to Jim Orlin states that every equistable graph is a general partition graph. The conjecture holds within the class of chordal graphs; if true in general, it would provide a combinatorial characterization of equistable graphs.Exploiting the combinatorial features of triangle graphs and general partition graphs, we verify Orlin’s conjecture for several graph classes, including AT-free graphs and various product graphs. More specifically, we obtain a complete characterization of the equistable graphs that are non-prime with respect to the Cartesian or the tensor product, and provide some necessary and sufficient conditions for the equistability of strong, lexicographic and deleted lexicographic products. We also show that the general partition graphs are not closed under the strong product, answering a question by McAvaney et al.  相似文献   

4.
Election is a classical paradigm in distributed algorithms. This paper aims to design and analyze a distributed algorithm choosing a node in a graph which models a network. In case the graph is a tree, a simple schema of algorithm acts as follows: it removes leaves until the graph is reduced to a single vertex; the elected one. In Métivier et al. (2003) [7], the authors studied a randomized variant of this schema which gives the same probability of being elected to each node of the tree. They conjectured that the expected election duration of this algorithm is O(ln(n)) where n denotes the size of the tree, and asked whether it is possible to use the same algorithm to obtain a fair election in other classes of graphs.In this paper, we prove their conjecture. We then introduce a new structure called polyominoid graphs. We show how a spanning tree for these graphs can be computed locally so that our algorithm, applied to this spanning tree, gives a uniform election algorithm on polyominoids.  相似文献   

5.
Every planar graph is known to be acyclically 7-choosable and is conjectured to be acyclically 5-choosable (Borodin et al. 2002) [7]. This conjecture if proved would imply both Borodin’s acyclic 5-color theorem (1979) and Thomassen’s 5-choosability theorem (1994). However, as yet it has been verified only for several restricted classes of graphs.Some sufficient conditions are also obtained for a planar graph to be acyclically 4-choosable and 3-choosable. In particular, acyclic 4-choosability was proved for the following planar graphs: without 3-cycles and 4-cycles (Montassier, 2006 [23]), without 4-cycles, 5-cycles and 6-cycles (Montassier et al. 2006 [24]), and either without 4-cycles, 6-cycles and 7-cycles, or without 4-cycles, 6-cycles and 8-cycles (Chen et al. 2009 [14]).In this paper it is proved that each planar graph with neither 4-cycles nor 6-cycles adjacent to a triangle is acyclically 4-choosable, which covers these four results.  相似文献   

6.
Packing coloring is a partitioning of the vertex set of a graph with the property that vertices in the i-th class have pairwise distance greater than i. The main result of this paper is a solution of an open problem of Goddard et al. showing that the decision whether a tree allows a packing coloring with at most k classes is NP-complete.We further discuss specific cases when this problem allows an efficient algorithm. Namely, we show that it is decideable in polynomial time for graphs of bounded treewidth and diameter, and fixed parameter tractable for chordal graphs.We accompany these results by several observations on a closely related variant of the packing coloring problem, where the lower bounds on the distances between vertices inside color classes are determined by an infinite nondecreasing sequence of bounded integers.  相似文献   

7.
Given a graph G=(V,E), a vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind et al. (1997) [14] studied proper t-frugal colourings and Yuster (1998) [22] studied acyclic proper 2-frugal colourings. In this paper, we expand and generalise this study.  相似文献   

8.
Suppose G is a graph of bounded degree d, and one needs to remove ?n of its edges in order to make it planar. We show that in this case the statistics of local neighborhoods around vertices of G is far from the statistics of local neighborhoods around vertices of any planar graph G. In fact, a similar result is proved for any minor-closed property of bounded degree graphs.The main motivation of the above result comes from theoretical computer-science. Using our main result we infer that for any minor-closed property P, there is a constant time algorithm for detecting if a graph is “far” from satisfying P. This, in particular, answers an open problem of Goldreich and Ron [STOC 1997] [20], who asked if such an algorithm exists when P is the graph property of being planar. The proof combines results from the theory of graph minors with results on convergent sequences of sparse graphs, which rely on martingale arguments.  相似文献   

9.
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.  相似文献   

10.
《Discrete Mathematics》2023,346(2):113220
The orientation completion problem for a fixed class of oriented graphs asks whether a given partially oriented graph can be completed to an oriented graph in the class. Orientation completion problems have been studied recently for several classes of oriented graphs, including local tournaments. Local tournaments are intimately related to proper circular-arc graphs and proper interval graphs. In particular, proper interval graphs are precisely those which can be oriented as acyclic local tournaments. In this paper we determine all obstructions for acyclic local tournament orientation completions. These are in a sense minimal partially oriented graphs that cannot be completed to acyclic local tournaments. Our results imply that a polynomial time certifying algorithm exists for the acyclic local tournament orientation completion problem.  相似文献   

11.
《Journal of Graph Theory》2018,87(3):317-332
We describe the missing class of the hierarchy of mixed unit interval graphs. This class is generated by the intersection graphs of families of unit intervals that are allowed to be closed, open, and left‐closed‐right‐open. (By symmetry, considering closed, open, and right‐closed‐left‐open unit intervals generates the same class.) We show that this class lies strictly between unit interval graphs and mixed unit interval graphs. We give a complete characterization of this new class, as well as quadratic‐time algorithms that recognize graphs from this class and produce a corresponding interval representation if one exists. We also show that the algorithm from Shuchat et al. [8] directly extends to provide a quadratic‐time algorithm to recognize the class of mixed unit interval graphs.  相似文献   

12.
It is known that planar graphs without cycles of length from 4 to 7 are 3-colorable (Borodin et al., 2005) [13] and that planar graphs in which no triangles have common edges with cycles of length from 4 to 9 are 3-colorable (Borodin et al., 2006) [11]. We give a common extension of these results by proving that every planar graph in which no triangles have common edges with k-cycles, where k∈{4,5,7} (or, which is equivalent, with cycles of length 3, 5 and 7), is 3-colorable.  相似文献   

13.
As a generalization of directed and undirected graphs, Edmonds and Johnson [J. Edmonds, E.L. Johnson, Matching: A well-solved class of linear programs, in: R. Guy, H. Hanani, N. Sauer, J. Schönheim (Eds.), Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 88-92] introduced bidirected graphs. A bidirected graph is a graph each arc of which has either two positive end-vertices (tails), two negative end-vertices (heads), or one positive end-vertex (tail) and one negative end-vertex (head). We extend the notion of directed paths, distance, diameter and strong connectivity from directed to bidirected graphs and characterize those undirected graphs that allow a strongly connected bidirection. Considering the problem of finding the minimum diameter of all strongly connected bidirections of a given undirected graph, we generalize a result of Fomin et al. [F.V. Fomin, M. Matamala, E. Prisner, I. Rapaport, Bilateral orientations in graphs: Domination and AT-free classes, in: Proceedings of the Brazilian Symposium on Graphs, Algorithms and Combinatorics, GRACO 2001, in: Electronics Notes in Discrete Mathematics, vol. 7, Elsevier Science Publishers, 2001] about directed graphs and obtain an upper bound for the minimum diameter which depends on the minimum size of a dominating set and the number of bridges in the undirected graph.  相似文献   

14.
Tutte’s 3-Flow Conjecture suggests that every bridgeless graph with no 3-edge-cut can have its edges directed and labelled by the numbers 1 or 2 in such a way that at each vertex the sum of incoming values equals the sum of outgoing values. In this paper we show that Tutte’s 3-Flow Conjecture is true for Cayley graphs of groups whose Sylow 2-subgroup is a direct factor of the group; in particular, it is true for Cayley graphs of nilpotent groups. This improves a recent result of Potočnik et al. (Discrete Math. 297:119–127, 2005) concerning nowhere-zero 3-flows in abelian Cayley graphs.  相似文献   

15.
The kk-domination number   of a graph is the minimum size of a set DD such that every vertex of GG is at distance at most kk from DD. We give a linear-time constant-factor algorithm for approximation of the kk-domination number in classes of graphs with bounded expansion, which include e.g. proper minor-closed graph classes, proper classes closed on topological minors and classes of graphs that can be drawn on a fixed surface with bounded number of crossings on each edge.  相似文献   

16.
A complete coloring of a simple graph G is a proper vertex coloring such that each pair of colors appears together on at least one edge. The achromatic number ψ(G) is the greatest number of colors in such a coloring. We say a class of graphs is fragmentable if for any positive ε, there is a constant C such that any graph in the class can be broken into pieces of size at most C by removing a proportion at most ε of the vertices. Examples include planar graphs and grids of fixed dimension. Determining the achromatic number of a graph is NP‐complete in general, even for trees, and the achromatic number is known precisely for only very restricted classes of graphs. We extend these classes very considerably, by giving, for graphs in any class which is fragmentable, triangle‐free, and of bounded degree, a necessary and sufficient condition for a sufficiently large graph to have a complete coloring with a given number of colors. For the same classes, this gives a tight lower bound for the achromatic number of sufficiently large graphs, and shows that the achromatic number can be determined in polynomial time. As examples, we give exact values of the achromatic number for several graph families. © 2009 Wiley Periodicals, Inc. J Graph Theory 65:94–114, 2010  相似文献   

17.
A chordal graph is called restricted unimodular if each cycle of its vertex‐clique incidence bipartite graph has length divisible by 4. We characterize these graphs within all chordal graphs by forbidden induced subgraphs, by minimal relative separators, and in other ways. We show how to construct them by starting from block graphs and multiplying vertices subject to a certain restriction, which leads to a linear‐time recognition algorithm. We show how they are related to other classes such as distance‐hereditary chordal graphs and strongly chordal graphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 121–136, 1999  相似文献   

18.
Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996) [3], first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010) [11]. Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) [3] is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) [3].  相似文献   

19.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

20.
In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph as a minor. A set of four graphs is shown to be the obstruction set for the class of graphs with branchwidth at most three. Moreover, we give a safe and complete set of reduction rules for the graphs with branchwidth at most three. Using this set, a linear time algorithm is given that verifies if a given graph has branchwidth at most three, and, if so, outputs a minimum width branch decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号