首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A function f:V(G)→{+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1,0,−1}”, we can define the minus dominating function and the minus domination number of G. In this note, by applying the Turán theorem, we present sharp lower bounds on the signed domination number for a graph containing no (k+1)-cliques. As a result, we generalize a previous result due to Kang et al. on the minus domination number of k-partite graphs to graphs containing no (k+1)-cliques and characterize the extremal graphs.  相似文献   

2.
Let G=(V1,V2;E) be a bipartite graph with |V1|=|V2|=3k, where k>0. In this paper it is proved that if d(x)+d(y)≥4k−1 for every pair of nonadjacent vertices xV1, yV2, then G contains k−1 independent cycles of order 6 and a path of order 6 such that all of them are independent. Furthermore, if d(x)+d(y)≥4k for every pair of nonadjacent vertices xV1, yV2 and k>2, then G contains k−2 independent cycles of order 6 and a cycle of order 12 such that all of them are independent.  相似文献   

3.
The concept of degree distance of a connected graph G is a variation of the well-known Wiener index, in which the degrees of vertices are also involved. It is defined by D(G)=∑xV(G)d(x)∑yV(G)d(x,y), where d(x) and d(x,y) are the degree of x and the distance between x and y, respectively. In this paper it is proved that connected graphs of order n≥4 having the smallest degree distances are K1,n−1,BS(n−3,1) and K1,n−1+e (in this order), where BS(n−3,1) denotes the bistar consisting of vertex disjoint stars K1,n−3 and K1,1 with central vertices joined by an edge.  相似文献   

4.
A spanning subgraph S=(V,E) of a connected graph G=(V,E) is an (x+c)-spanner if for any pair of vertices u and v, dS(u,v)≤dG(u,v)+c where dG and dS are the usual distance functions in G and S, respectively. The parameter c is called the delay of the spanner. We study edge-disjoint spanners in graphs in multi-dimensional tori. We show that each two-dimensional torus has a set of two edge-disjoint spanners of delay approximately the size of the smaller dimension. Moreover, we show that this delay is close to the best possible. In three-dimensional tori, we find a set of three edge-disjoint spanners with delay approximately the sum of the sizes of the two smaller dimensions when all dimensions are of even size. Surprisingly, we also find a set of two edge-disjoint spanners in three-dimensional tori of constant delay. In d-dimensional tori, we show that for any kd/5, there is a set of k edge-disjoint spanners with delay depending only on k and the size of the smaller k dimensions.  相似文献   

5.
Proposing them as a general framework, Liu and Yu (2001) [6] introduced (n,k,d)-graphs to unify the concepts of deficiency of matchings, n-factor-criticality and k-extendability. Let G be a graph and let n,k and d be non-negative integers such that n+2k+d+2?|V(G)| and |V(G)|−nd is even. If on deleting any n vertices from G the remaining subgraph H of G contains a k-matching and each k-matching can be extended to a defect-d matching in H, then G is called an (n,k,d)-graph. In this paper, we obtain more properties of (n,k,d)-graphs, in particular the recursive relations of (n,k,d)-graphs for distinct parameters n,k and d. Moreover, we provide a characterization for maximal non-(n,k,d)-graphs.  相似文献   

6.
Given a graph G=(V,E) and a positive integer k, the partition into cliques (pic) decision problem consists of deciding whether there exists a partition of V into k disjoint subsets V1,V2,…,Vk such that the subgraph induced by each part Vi is a complete subgraph (clique) of G. In this paper, we establish both the NP-completeness of pic for planar cubic graphs and the Max SNP-hardness of pic for cubic graphs. We present a deterministic polynomial time -approximation algorithm for finding clique partitions in maximum degree three graphs.  相似文献   

7.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

8.
We give sufficient conditions for a graph to have degree bounded trees. Let G be a connected graph and A a vertex subset of G. We denote by σk(A) the minimum value of the degree sum in G of any k independent vertices in A and by w(GA) the number of components in the induced subgraph GA. Our main results are the following: (i) If σk(A)≥|V(G)|−1, then G contains a tree T with maximum degree at most k and AV(T). (ii) If σkw(GA)(A)≥|A|−1, then G contains a spanning tree T such that dT(x)≤k for every xA. These are generalizations of the result by Win [S. Win, Existenz von Gerüsten mit Vorgeschriebenem Maximalgrad in Graphen, Abh. Math. Sem. Univ. Hamburg 43 (1975) 263-267] and the degree conditions are sharp.  相似文献   

9.
Szemerédi's regularity lemma proved to be a powerful tool in extremal graph theory. Many of its applications are based on the so-called counting lemma: if G is a k-partite graph with k-partition V1∪?∪Vk, |V1|=?=|Vk|=n, where all induced bipartite graphs G[Vi,Vj] are (d,ε)-regular, then the number of k-cliques Kk in G is . Frankl and Rödl extended Szemerédi's regularity lemma to 3-graphs and Nagle and Rödl established an accompanying 3-graph counting lemma analogous to the graph counting lemma above. In this paper, we provide a new proof of the 3-graph counting lemma.  相似文献   

10.
Let G be a graph of order n and k a positive integer. A set of subgraphs H={H1,H2,…,Hk} is called a k-degenerated cycle partition (abbreviated to k-DCP) of G if H1,…,Hk are vertex disjoint subgraphs of G such that and for all i, 1≤ik, Hi is a cycle or K1 or K2. If, in addition, for all i, 1≤ik, Hi is a cycle or K1, then H is called a k-weak cycle partition (abbreviated to k-WCP) of G. It has been shown by Enomoto and Li that if |G|=nk and if the degree sum of any pair of nonadjacent vertices is at least nk+1, then G has a k-DCP, except GC5 and k=2. We prove that if G is a graph of order nk+12 that has a k-DCP and if the degree sum of any pair of nonadjacent vertices is at least , then either G has a k-WCP or k=2 and G is a subgraph of K2Kn−2∪{e}, where e is an edge connecting V(K2) and V(Kn−2). By using this, we improve Enomoto and Li’s result for n≥max{k+12,10k−9}.  相似文献   

11.
Given a graph G = (V, E), a set of vertices covers a vertex if the edge-connectivity between S and v is at least a given number k. Vertices in S are called sources. The maximum-cover source location problem, which is a variation of the source location problem, is to find a source set S with a given size at most p, maximizing the sum of the weight of vertices covered by S. In this paper, we show a polynomial-time algorithm for this problem in the case of k = 3 for a given undirected graph with a vertex weight function and an edge capacity function. Moreover, we show that this problem is NP-hard even if vertex weights and edge capacities are both uniform for general k.  相似文献   

12.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

13.
A variation in the classical Turan extrernal problem is studied. A simple graphG of ordern is said to have propertyPk if it contains a clique of sizek+1 as its subgraph. Ann-term nonincreasing nonnegative integer sequence π=(d1, d2,⋯, d2) is said to be graphic if it is the degree sequence of a simple graphG of ordern and such a graphG is referred to as a realization of π. A graphic sequence π is said to be potentiallyP k-graphic if it has a realizationG having propertyP k . The problem: determine the smallest positive even number σ(k, n) such that everyn-term graphic sequence π=(d1, d2,…, d2) without zero terms and with degree sum σ(π)=(d 1+d 2+ …+d 2) at least σ(k,n) is potentially Pk-graphic has been proved positive. Project supported by the National Natural Science Foundation of China (Grant No. 19671077) and the Doctoral Program Foundation of National Education Department of China.  相似文献   

14.
The eccentric distance sum (EDS) is a novel topological index that offers a vast potential for structure activity/property relationships. For a connected graph G, the eccentric distance sum is defined as ξd(G)=vV(G)ecG(v)DG(v), where ecG(v) is the eccentricity of a vertex v in G and DG(v) is the sum of distances of all vertices in G from v. More recently, Yu et al. [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 99-107] proved that for an n-vertex tree T, ξd(T)?4n2−9n+5, with equality holding if and only if T is the n-vertex star Sn, and for an n-vertex unicyclic graph G, ξd(G)?4n2−9n+1, with equality holding if and only if G is the graph obtained by adding an edge between two pendent vertices of n-vertex star. In this note, we give a short and unified proof of the above two results.  相似文献   

15.
Fan [G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002) 187-202] proved that if G is a graph with minimum degree δ(G)≥3k for any positive integer k, then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if δ(G)≥3k+1, then |E(Ck)|−|E(Ck−1)|=2. In this paper, we generalize Fan’s result, and show that if we let G be a graph with minimum degree δ(G)≥3, for any positive integer k (if k≥2, then δ(G)≥4), if dG(u)+dG(v)≥6k−1 for every pair of adjacent vertices u,vV(G), then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if dG(u)+dG(v)≥6k+1, then |E(Ck)|−|E(Ck−1)|=2.  相似文献   

16.
Let G be a graph. For SV(G), let Δk(S) denote the maximum value of the degree sums of the subsets of S of order k. In this paper, we prove the following two results. (1) Let G be a 2-connected graph. If Δ2(S)≥d for every independent set S of order κ(G)+1, then G has a cycle of length at least min{d,|V(G)|}. (2) Let G be a 2-connected graph and X a subset of V(G). If Δ2(S)≥|V(G)| for every independent set S of order κ(X)+1 in G[X], then G has a cycle that includes every vertex of X. This suggests that the degree sum of nonadjacent two vertices is important for guaranteeing the existence of these cycles.  相似文献   

17.
Let G be a simple connected graph and α be a given real number. The zeroth-order general Randi? index of 0Rα(G) is defined as ∑vV(G)[dG(v)]α, where dG(v) denotes the degree of the vertex v of G. In this paper, for any α(≠0,1), we give sharp bounds of the zeroth-order general Randi? index 0Rα of all bicyclic graphs with n vertices and k pendent vertices.  相似文献   

18.
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f:V(G)→{0,1,2,…,k} with the following satisfied for all vertices u and v: |f(u)-f(v)|?diam(G)-dG(u,v)+1, where dG(u,v) is the distance between u and v. We prove a lower bound for the radio number of trees, and characterize the trees achieving this bound. Moreover, we prove another lower bound for the radio number of spiders (trees with at most one vertex of degree more than two) and characterize the spiders achieving this bound. Our results generalize the radio number for paths obtained by Liu and Zhu.  相似文献   

19.
A strong defensive alliance in a graph G=(V,E) is a set of vertices AV, for which every vertex vA has at least as many neighbors in A as in VA. We call a partition A,B of vertices to be an alliance-free partition, if neither A nor B contains a strong defensive alliance as a subset. We prove that a connected graph G has an alliance-free partition exactly when G has a block that is other than an odd clique or an odd cycle.  相似文献   

20.
Let G=(V,E) be a simple undirected graph with a set V of vertices and a set E of edges. Each vertex vV has an integer valued demand d(v)?0. The source location problem with vertex-connectivity requirements in a given graph G asks to find a set S of vertices with the minimum cardinality such that there are at least d(v) vertex-disjoint paths between S and each vertex vV-S. In this paper, we show that the problem with d(v)?3, vV can be solved in linear time. Moreover, we show that in the case where d(v)?4 for some vertex vV, the problem is NP-hard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号